• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanopartículas antiferromagnéticas de MnO para aplicações em biomedicina como agentes de contraste / Antiffeomagnetic MNo nanoparticles for applications in biomedicine as a contrast agent

Neves, Herbert Rodrigo 24 February 2012 (has links)
Nanomateriais têm sido amplamente estudados, como resultado de suas propriedades físicas e químicas diferenciadas, que oferecem um grande número de possibilidades para aplicações em biomedicina, principalmente na terapia de câncer e no desenvolvimento de estratégias de diagnóstico não invasivo. O óxido de ferro superparamagnético (SPION) é o principal material estudado como agente de contraste para imagem por ressonância magnética, devido à sua capacidade de reduzir o tempo de relaxação transversal (T2) em diferentes tecidos e sua menor toxicidade que os complexos de Gd3+ e Mn2+ usados atualmente. Entretanto, o acumulo de SPIONs pode ser facilmente confundido com sinais referentes à calcificação, depósito de metais pesados e sangramentos, e a alta susceptibilidade magnética do material promove distorções na imagem. Assim, alguns aspectos são desejáveis em material para que este tenha potencial para substituir o SPION, tais como forma nanoparticulada, para fácil modificação de superfície e possibilidade de funcionalização com agentes biosseletivos, e contraste positivo em T1. As nanopartículas (NPs) antiferromagnéticas de MnO atendem a todos os requisitos necessários para substituir o óxido de ferro. As NPs de MnO foram sintetizadas a partir da decomposição térmica do acetilacetonato de manganês(II) em uma variação do método poliol modificado, resultando na formação de NPs com tamanho médio de 21 ± 3,9 nm. Foi realizada a substituição de ligantes de superfície para que se substituísse o ácido oleico adsorvido sobre o material por 3-aminopropiltrimetoxisilano (APTMS) e foi determinada a concentração de grupamentos amino sobre a superfície das NPs. Posteriormente, obteve-se uma estrutura do tipo \"core/shell\" dispersível em meio aquoso e biocompatível pela reação dos grupos amino livres com o carboxilato da carboximetil dextrana (CMDex). O potencial de superfície e a estabilidade coloidal das NPs funcionalizadas foram caracterizados por mobilidade eletroforética e por espalhamento de luz dinâmico em água deionizada e em condições que mimetizavam o sangue. As NPs apresentaram toxicidade em células cancerosas de carcinoma cervical humano (HeLa). Entretanto, não foi observada toxicidade significativa na linhagem de células não cancerosas NCTC clone L929. Tanto as NPs como sintetizadas quanto as recobertas com CMDex apresentaram controle de tamanho e forma, apresentando distribuição de tamanho compatível com o esperado para as aplicações em biomedicina. / Nanomaterials have been widely studied as a result of their interesting physical and chemical properties, which offer a large number of possibilities for applications in biomedicine mainly in cancer therapy and the development of strategies for non-invasive diagnosis. The superparamagnetic iron oxide nanoparticles (SPION) is the main studied material as contrast agent for magnetic resonance imaging (MRI) due to its ability to reduce the transverse relaxation time (T2) in different tissues and lower toxicity than Gd3+ and Mn2+ complexes currently used. However, this SPIONs accumulation can be confused with signals from calcification, bleeding or metal deposits, and the high magnetic susceptibility distorts the background image because its ferromagnetic behavior. Some aspects are desirable to replace SPIONs, such as nanoparticulate form for simple surface modification and labeling with targeting agents, and positive longitudinal T1 relaxation time contrast ability. The antiferromagnetic MnO NPs attend all these requirements and overcome the drawback of using SPION. In our study, MnO NPs were synthesized by the thermal decomposition of Mn(II) acetylacetonate by a variation of the modified polyol process resulting in spherical nanoparticles with average size of 21 ± 3,9 nm. The ligand-exchange step was used to replace the oleic acid adsorbed on the as-synthesized NPs surface by 3-aminopropyltriethoxysilane (APTMS) and the total free amine groups on the NPs surface was determined. After that, a biocompatible and water-dispersible core/shell structure was obtained by coating with carboxymethyl dextran (CMDex) using the free amine-terminal group from APTMS and the carboxylate groups present in the CMDex molecules conjungation. Surface potential and colloidal stability of these functionalized NPs were evaluated by electrophoretic mobility and dynamic light scattering techniques in both water and artificial blood by using the Simulated Body Fluid (SBF) medium. While the water-dispersible NPs have shown toxicity in the human cell line derived from cervical cancer (HeLa), they have not shown significantly cytotoxicity in the healthy fibroblast cells (cell line L929). Both the as-synthesized and coated NPs present controlled size and shape and the final NPs size distribution and magnetic properties are compatible with the expected for biomedical applications.
2

Nanopartículas antiferromagnéticas de MnO para aplicações em biomedicina como agentes de contraste / Antiffeomagnetic MNo nanoparticles for applications in biomedicine as a contrast agent

Herbert Rodrigo Neves 24 February 2012 (has links)
Nanomateriais têm sido amplamente estudados, como resultado de suas propriedades físicas e químicas diferenciadas, que oferecem um grande número de possibilidades para aplicações em biomedicina, principalmente na terapia de câncer e no desenvolvimento de estratégias de diagnóstico não invasivo. O óxido de ferro superparamagnético (SPION) é o principal material estudado como agente de contraste para imagem por ressonância magnética, devido à sua capacidade de reduzir o tempo de relaxação transversal (T2) em diferentes tecidos e sua menor toxicidade que os complexos de Gd3+ e Mn2+ usados atualmente. Entretanto, o acumulo de SPIONs pode ser facilmente confundido com sinais referentes à calcificação, depósito de metais pesados e sangramentos, e a alta susceptibilidade magnética do material promove distorções na imagem. Assim, alguns aspectos são desejáveis em material para que este tenha potencial para substituir o SPION, tais como forma nanoparticulada, para fácil modificação de superfície e possibilidade de funcionalização com agentes biosseletivos, e contraste positivo em T1. As nanopartículas (NPs) antiferromagnéticas de MnO atendem a todos os requisitos necessários para substituir o óxido de ferro. As NPs de MnO foram sintetizadas a partir da decomposição térmica do acetilacetonato de manganês(II) em uma variação do método poliol modificado, resultando na formação de NPs com tamanho médio de 21 ± 3,9 nm. Foi realizada a substituição de ligantes de superfície para que se substituísse o ácido oleico adsorvido sobre o material por 3-aminopropiltrimetoxisilano (APTMS) e foi determinada a concentração de grupamentos amino sobre a superfície das NPs. Posteriormente, obteve-se uma estrutura do tipo \"core/shell\" dispersível em meio aquoso e biocompatível pela reação dos grupos amino livres com o carboxilato da carboximetil dextrana (CMDex). O potencial de superfície e a estabilidade coloidal das NPs funcionalizadas foram caracterizados por mobilidade eletroforética e por espalhamento de luz dinâmico em água deionizada e em condições que mimetizavam o sangue. As NPs apresentaram toxicidade em células cancerosas de carcinoma cervical humano (HeLa). Entretanto, não foi observada toxicidade significativa na linhagem de células não cancerosas NCTC clone L929. Tanto as NPs como sintetizadas quanto as recobertas com CMDex apresentaram controle de tamanho e forma, apresentando distribuição de tamanho compatível com o esperado para as aplicações em biomedicina. / Nanomaterials have been widely studied as a result of their interesting physical and chemical properties, which offer a large number of possibilities for applications in biomedicine mainly in cancer therapy and the development of strategies for non-invasive diagnosis. The superparamagnetic iron oxide nanoparticles (SPION) is the main studied material as contrast agent for magnetic resonance imaging (MRI) due to its ability to reduce the transverse relaxation time (T2) in different tissues and lower toxicity than Gd3+ and Mn2+ complexes currently used. However, this SPIONs accumulation can be confused with signals from calcification, bleeding or metal deposits, and the high magnetic susceptibility distorts the background image because its ferromagnetic behavior. Some aspects are desirable to replace SPIONs, such as nanoparticulate form for simple surface modification and labeling with targeting agents, and positive longitudinal T1 relaxation time contrast ability. The antiferromagnetic MnO NPs attend all these requirements and overcome the drawback of using SPION. In our study, MnO NPs were synthesized by the thermal decomposition of Mn(II) acetylacetonate by a variation of the modified polyol process resulting in spherical nanoparticles with average size of 21 ± 3,9 nm. The ligand-exchange step was used to replace the oleic acid adsorbed on the as-synthesized NPs surface by 3-aminopropyltriethoxysilane (APTMS) and the total free amine groups on the NPs surface was determined. After that, a biocompatible and water-dispersible core/shell structure was obtained by coating with carboxymethyl dextran (CMDex) using the free amine-terminal group from APTMS and the carboxylate groups present in the CMDex molecules conjungation. Surface potential and colloidal stability of these functionalized NPs were evaluated by electrophoretic mobility and dynamic light scattering techniques in both water and artificial blood by using the Simulated Body Fluid (SBF) medium. While the water-dispersible NPs have shown toxicity in the human cell line derived from cervical cancer (HeLa), they have not shown significantly cytotoxicity in the healthy fibroblast cells (cell line L929). Both the as-synthesized and coated NPs present controlled size and shape and the final NPs size distribution and magnetic properties are compatible with the expected for biomedical applications.
3

Equilibrium Between FeO - MnO Slags and Iron-Manganese Alloys

Caryll, David 05 1900 (has links)
This dissertation describes the determination of the equilibrium constant for the reduction of ferrous oxide by manganese to yield manganese oxide and iron. The experimental work was carried out over the temperature range of 1650°C to 1870°C. The results from the present work were combined with reliable published data to give what is considered to be the best relationship between the equilibrium constant and the temperature. The difference between this study and previous work on this topic is the radically new experimental approach. While previous workers used crucible techniques to achieve equilibrium for their system and standard wet chemical analysis, the method used here involved levitation melting and analysis by the electron probe micro-analyser. / Thesis / Master of Engineering (ME)
4

Návrh metodiky pro výběr provozovatelů virtuálního operátora v ČR / Design of metodology for selection of virtual network operators in Czech republic

Opatřil, Marek January 2012 (has links)
The main aim of this work is design methodology for the selection of subject - service provider of virtual operator in the Czech Republic and applied methodology on several subjects. Another aim is to analyze the situation in the mobile telecommunications markets in the world, especially from the perspective of MVNO. The last objective is a detailed characterization of conditions and the state of the mobile telecommunications market in the Czech Republic The second chapter describes the entities of mobile telecommunications market with a detailed focus on MVNO. The third chapter describes the critical factors that determine success MVNO. Later in thesis I analyze the mobile virtual network operator in the world and focuses on the Czech telecommunications market. In the final phase of thesis is I design methodology for selecting potential operator - the operator a virtual mobile operator in the Czech Republic, along with the application of the methodology on several subjects and verification. The benefit of this work is proposed methodology and its application for companies that are interested in entering the Czech telecommunications market through mobile virtual operator and companies that offer foundation and the know-how to potential operators of mobile virtual network operator. A side benefit of this work is a comprehensive look at the principle of operation of mobile virtual network operators in telecommunications.
5

Investigating Novel Methods for Developing GaN Nanowire-based Devices Fabricated by Laser Ablation and via Material Hybridization for Optoelectronic Applications

Almalawi, Dhaifallah R. 27 July 2020 (has links)
III-nitride mainly GaN semiconductors are the most important materials for a wide range of applications, in particular high-power devices, due to the tunable direct bandgap, their chemical, and thermal stability. However, their growth on suitable substrates is still problematic, and low UV GaN efficiency hinders the efforts aimed at improving the performance of emitting devices. This dissertation presents novel growth and device fabrication methods capable of overcoming these issues using different novel strategies. The work reported in this dissertation comprises five parts. The first two parts demonstrate a new low-cost pulsed laser deposition (PLD)-based strategy for large-scale applications. This was developed to grow high-quality dislocation-free GaN NWs epitaxially on any bulk, flexible, or two-dimensional (2D) substrates without a catalyst, irrespective of the lattice mismatch or type of the substrate. As part of the work reported here, Si, p-GaN, Ga2O3, sapphire, graphene, MXene, and transition-metal dichalcogenide (TMD) substrates were utilized. Also, the adopted growth mechanisms are discussed, along with the advanced structural and optical characterizations. Advanced structural and optical characterizations further confirm the growth mechanism and demonstrate the superior optical and structural quality of GaN NWs. In the third part, a novel multiple quantum wells (MQWs)-based structure grown on the NWs is described, indicating that these NWs can be used as a template to grow III-nitride-based devices. In the fourth part of the work, the significance of these GaN NWs is further demonstrated by reporting on the fabrication of a high-performance self-powered broadband photodetector incorporating these NWs hybridized by two perovskite types: organic/inorganic as well as all-inorganic perovskites (CH3NH3PbI3 and CsPbBr3), revealing two different self-powered photodetector characteristics with high photo-responsivity at 0V. In the last part of this work, the focus is given to a new environmentally friendly strategy to enhance the device UV emission efficiency by functionalizing GaN NWs with solution-processed p-MnO quantum dots (QDs) characterized by much wider bandgap energy than that of GaN. The energy transfer mechanism from QDs to NWs is also discussed using different structural and optical characterizations. This novel strategy is based on drop-casting QDs on NWs, which is simple, cost-effective, and applicable for large-scale applications.
6

MOCVD Of Carbonaceous MnO Coating : Electrochemical And Charge Transport Studies

Varade, Ashish 11 1900 (has links)
Metalorganic Chemical Vapour Deposition (MOCVD) is a versatile technique for the deposition of thin films of oxide materials as it offers advantages, such as deposition over large surface area, conformal coverage, selective area deposition, and a high degree of compositional control. The MOCVD process uses metalorganic (MO) complexes, such as β-diketonate and alkoxide-based complexes, as precursors. These complexes are stable and moderately volatile. Because of the direct bond between metal and oxygen, MO complexes are natural precursors for oxide coatings. As the process involves chemical reactions taking place on the substrate surface, growth of thin films by MOCVD depends on various parameters such as the chemical nature and concentration of precursors, reaction pressure, reaction temperature, and the nature of the substrate. Such a large parameter space of the CVD process, when combined with the dynamics (thermodynamics and fluid dynamics) and kinetics, makes it rather complex. This complexity allows one to make thin films of metastable phases, including amorphous materials. One of the important findings of the work is that MOCVD process is capable of making composite coatings of carbonaceous metal oxide. Manganese is multivalent and forms various stable oxides, such as MnO, Mn2O3, Mn3O4 and MnO2. There are various potential applications of manganese oxides. MnO2 is a very well studied material for its electrochemical applications in dry cells, lithium-ion batteries, and in supercapacitors. Hence, it becomes pertinent to explore the properties of thin films of manganese oxides prepared by MOCVD for various electrochemical and other applications. The thesis work is divided into two parts. Part 1 describes the synthesis of manganese complexes, their characterization, and their application to the CVD of coatings, especially those of carbonaceous MnO. Part 2 is devoted to a detailed study of electrochemical aspects of the carbonaceous MnO coatings, followed by a report on their unusual transport properties. Chapter 1 begins with a brief introduction to thin film deposition processes. In particular, the CVD process is described with reference to various parameters such as carrier gas flow, pressure, temperature and most importantly, the CVD precursor. The chapter ends with a description of the scope of the work undertaken for the present thesis. Chapter 2 deals with “Synthesis and Characterization of MO complexes”. It begins with a description of the classification of CVD precursors with the description of MO complexes such as β-diketonates, which are generally subliming crystalline solids. Manganese β-diketonate complexes are discussed in detail. Due to the multivalent nature of Mn, there are two possible complexes namely Mn(acac)2(H2O)2 and Mn(acac)3. These complexes have been synthesised and characterized (confirmed) by various techniques, such as elemental analysis (CHN), X-ray diffraction (XRD), FTIR spectroscopy, and mass spectroscopy. Thermal analysis of the complexes shows that they are suitable as MOCVD precursors. We have used Mn(acac)2(H2O)2 as a precursor in the present work. Metalorganic complexes, where metal ion is directly bonded with both nitrogen and oxygen, can be potential candidates for the precursor for oxynitrides coatings. We have therefore studied solid crystalline anthranilate complexes of various metal ions, such as Mn2+, Co2+, Cu2+ and Zn2+ and confirmed their formation. Thermal analysis shows that anthranilate complexes are fairly volatile below 250oC and decompose below 500oC. These complexes were pyrolysed in open air and in sealed tube at different temperatures, and the resulting powder product examined by XRD, SEM, EDAX and FTIR. This preliminary study shows that anthranilate complexes yield different oxides of Mn, Co and Cu under different pyrolysis conditions, with very interesting morphological features. Pyrolysis of Zn(aa)2 in a sealed tube leads to the formation of a nanocomposite of carbon and zinc oxide (wuerzite), rich in carbon, with potential for applications in catalysis. On the other hand, the pyrolysis of Zn(aa)2 in air at the same temperature leads to leads to crystalline, nanostructured zinc oxide (wuerzite). However, no attempt has been made to use these anthranilates as CVD precursors. Chapter 3 deals with “MOCVD of Manganese Oxides and their Characterization”. It begins with a brief review of various manganese oxides and their properties. This is followed by description of the CVD reactor used for the present work, together with the conditions employed for the deposition of MnOx films. Depositions have been carried out on different substrates such as SS-316, ceramic alumina and Si (111), while varying various deposition parameters, viz., substrate, reactor pressure, carrier gas (argon) flow rate, and the duration of deposition. Significantly, depositions are divided into two categories: one, carried out in argon ambient, in the absence of a supply of oxygen (or any other oxidant) and the second one, under oxygen flow, using argon as carrier gas. The films deposited in the absence of oxygen flow are thick, black in colour, and electrically conducting, indicating the presence of carbon. The growth rate follows a typical thermal pattern, with activation energy of ~ 1.7 eV. Detailed characterization by XRD, TEM/ED, Raman, FTIR and XPS (X-ray photoelectron spectroscopy) shows that these films are composed of MnO in a carbon-rich amorphous matrix. High-resolution SEM (fig. 1) reveals a fractal pattern of cauliflower morphology, comprising very fine particles (4 – 10 nm), characteristic of very large specific surface area of the film, which is confirmed by volumetric BET measurement (~2000 m2/g). We conclude that growth in argon ambient leads to a homogenous nanocomposite film of hydrated MnO in carbon-rich matrix. Thus, our study reveals that MOCVD is a novel one-step chemical method to produce homogenous composite thin films, wherein all components of the nanocomposite film emerge from the same chemical precursor. Carbon incorporation is generally avoided by empirical process design, as it is viewed as an impurity. The potential advantages of carbon incorporation are thus not examined and the composite nature of carbonaceous films not recognized in the literature. Carbonaceous nanocomposite film can be significant as an electrode in supercapacitors, as discussed in part 2 of the thesis. Chapter 3 describes films deposited under oxygen flow, which are no longer black and are highly resistive, indicating the absence of carbon in the film, as confirmed by Raman spectroscopy. XRD, FTIR and Raman spectroscopy reveal that the films obtained under oxygen flow are more crystalline than the ones obtained in the absence of oxygen flow, and that the films are generally nanocrystalline composites of two manganese oxides, such as MnO and Mn3O4. Given the context of the carbonaceous MnO films described above, chapter 4 begins with a review of electrochemical capacitors (also called supercapacitors or ultracapacitors), which are emerging as important energy storage devices. Until now, in the Mn-O system, hydrated MnO2 has been well-studied as an electrode material due to its low cost and environmental compatibility, but the low electrical conductivity of MnO2, together with irreversible redox reactions, reduces its performance. In electrochemical capacitor applications, metal-oxide/carbon composites are finding importance. Chapter 4 deals with “MnO/C Nanocomposite Coatings as Electrodes for Electrochemical Capacitor”. In this chapter, we have examined the novel EM, i.e., the hydrated MnO/C nanocomposite coating prepared by the MOCVD process on a conducting substrate (current collector) such as SS-316 as an electrode. Electrochemical measurements have been carried out for both the 3-electrode assembly (for basic aqueous electrolyte) and 2-electrode assembly (for gel polymer electrolyte) using cyclic voltammetry (CV), AC impedance and charge-discharge techniques. The studies lead to a maximum specific capacitance of 230 – 270 F/g at 1 mA/cm2 discharge current density for the MnO/C nanocomposite coating grown at 680oC. The Bode plot shows a maximum phase angle of around 74 – 82o, indicating capacitive behaviour. The MnO/C nanocomposite film shows a very small time constant (0.5 – 3 msec), which is good for high frequency applications. The pulse power figure of merit is found to be 650 – 2000 W/g. Capacitance determined for a large number of charge-discharge cycles (~20000), and at large current densities (50 mA/cm2) show promising results. The energy density (5 - 32 Wh/kg) and power density (2 – 4 kW/kg) estimated from charge-discharge data at 1 mA/cm2 shows the potential of the nanocomposite MnO/C as electrode for superior capacitor devices. Gel polymer electrolytes (GPE) offer the advantage of large electrochemical potential window due to its structural and chemical stability. Studies have been carried out to show that the MnO/C nanocomposite film is compatible with gel polymer electrolytes based on poly(methyl methacrylate) (PMMA) and poly(acrylonitrile) (PAN) with salts of magnesium triflate and magnesium perchlorate, respectively) and plasticizers (ethylene carbonate (EC) + propylene carbonate (PC)), in a 2-electrode assembly. Chapter 5 deals with “Magnetoconductance in MnO/C Nanocomposite Coatings on Alumina”. Amorphous systems, such as MnO/C composites wherein carbon is amorphous and MnO is nearly so, are highly symmetric condensed phases, which do not possess long range translational or orientational order. Disorder in the system creates Anderson localized states just above the valence band, which lead to reduced electrical conductivity. Amorphous systems show either a small negative magnetoresistance (~ 5%) or a small positive magnetoconductance (~ 7%) at very low temperatures (~ 10 K). As such, the transport properties of the MnO/C nanocomposite film have been investigated, and are reported in chapter 5. Transport and magnetotransport measurements have been made on the MnO/C nanocomposite film grown on alumina. It is found that the MnO/C nanocomposite coating exhibits a giant negative MR (22.3%) at a temperature as high as 100 K, which is unusual because pure MnO is anti-ferromagnetic and does not ordinarily show any magnetoresistance (MR), while amorphous carbon is known to show a small MR at very low temperatures (~7 K), due to weak-localization. The present results mean that a mechanism other than weak-localization plays a role in this nanocomposite material. Further study of this material is called for, which can perhaps lead to giant magnetoresistance (GMR) at room temperature in a metal-oxide/carbon nanocomposite. A summary of the work and an outlook for further research are given in the concluding chapter 6.
7

Nestacionární procesy částic / Nonstationary particle processes

Jirsák, Čeněk January 2011 (has links)
Title: Nonstacionary particle processes Author: Čeněk Jirsák Department: Department of Probability and Mathematical Statistics Supervisor: Doc. RNDr. Jan Rataj, CSc., Mathematical Institute, Charles University Supervisor's e-mail address: rataj@karlin.mff.cuni.cz Abstract: Many real phenomena can be modeled as random closed sets of different Hausdorff dimension in Rd . One of the main characteristics of such random set is its expected Hausdorff measure. In case that this measure has a density, the density is called intensity function. In present paper we define a nonparametric kernel estimation of the intensity function. The concept of Hk -rectifiable set has a key role here. Properties of kernel estimation such as unbiasness or convergence behavior are studied. As the esti- mation may be difficult to compute precisely numerical approximations are derived for practical use. Parametric models are also briefly mentioned and the kernel estimation is used with the minimum contrast method to estimate the parameters of the model. At last the suggested methods are tested on simulated data. Keywords: stochastic geometry, intensity measure, random closed set, kernel estimation 1
8

SHORT-TERM FORMATION KINETICS OF THE CONTINUOUS GALVANIZING INTERFACIAL LAYER ON MN-CONTAINING STEELS

Alibeigi, Samaneh 11 1900 (has links)
Aluminium is usually added to the continuous hot-dip galvanizing bath to improve coating ductility and adhesion through the rapid formation of a thin Fe-Al intermetallic layer at the substrate-liquid interface, thereby inhibiting the formation of brittle Fe-Zn intermetallic compounds. On the other hand, Mn is essential for obtaining the desired microstructure and mechanical properties in advanced high strength steels, but is selectively oxidized in conventional continuous galvanizing line annealing atmospheres. This can deteriorate reactive wetting by the liquid Zn(Al,Fe) alloy during galvanizing and prevent the formation of a well developed Fe-Al interfacial layer at the coating/substrate interface, resulting in poor zinc coating adherence and formability. However, despite Mn selective oxidation and the presence of surface MnO, complete reactive wetting and a well developed Fe-Al interfacial layer have been observed for Mn-containing steels. These observations have been attributed to the aluminothermic reduction of surface MnO in the galvanizing bath. According to this reaction, MnO is reduced by the bath dissolved Al, so the bath can have contact with the substrate and form the desired interfacial layer. Heat treatments compatible with continuous hot-dip galvanizing were performed on four different Mn-containing steels whose compositions contained 0.2-3.0 wt% Mn. It was determined that substrate Mn selectively oxidized to MnO for all alloys and process atmospheres. Little Mn surface segregation was observed for the 0.2Mn steel, as would be expected because of its relatively low Mn content, whereas the 1.4Mn through 3.0Mn steels showed considerable Mn-oxide surface enrichment. In addition, the proportion of the substrate surface covered with MnO and its thickness increased with increasing steel Mn content.A galvanizing simulator equipped with a He jet spot cooler was used to arrest the reaction between the substrate and liquid zinc coating to obtain well-characterized reaction times characteristic of the timescales encountered while the strip is resident in the industrial continuous galvanizing bath and short times after in which the Zn-alloy layer continues to be liquid (i.e. before coating solidification). Two different bath dissolved Al contents (0.20 and 0.30 wt%) were chosen for this study. The 0.20 wt% Al bath was chosen as it is widely used in industrial continuous galvanizing lines. The 0.30 wt% Al bath was chosen to (partially) compensate for any dissolved Al consumption arising from MnO reduction in the galvanizing bath.The Al uptake increased with increasing reaction time following non-parabolic growth kinetics for all experimental steels and dissolved Al baths. For the 0.20 wt% dissolved Al bath, the interfacial layer on the 1.4Mn steel showed the highest Al uptake, with the 0.2Mn, 2.5Mn and 3.0Mn substrates showing significantly lower Al uptake. However, increasing the dissolved bath Al to 0.30 wt% Al resulted in a significantly increased Al uptake being observed for the 2.5Mn and 3.0Mn steels for all reaction times. These observations were explained by the combined effects of the open microstructures associated with the multi-phase nature of an oxide-containing interfacial layer and additional Al consumption through MnO reduction. For instance, in the case of the 1.4Mn steel, the more open interfacial layer structure accelerated Fe diffusion through the interfacial layer and increased Al uptake versus the 0.2Mn substrate for the same bath Al. However, in the case of the 2.5Mn and 3.0Mn substrates and 0.20 wt% Al bath, additional Al consumption through MnO reduction caused the interfacial layer growth to become Al limited, whereas the very open structure dominated growth in the case of the 0.30 wt% Al bath and resulted in the changing the growth kinetics from mixed diffusion-controlled to a more interface controlled growth mode. A kinetic model based on oxide film growth (Smeltzer et al. 1961, Perrow et al. 1968) was developed to describe the Fe-Al interfacial layer growth kinetics within the context of the microstructural evolution of the Fe-Al interfacial layer for Mn-containing steels reacted in 0.20 wt% and 0.30 wt% dissolved Al baths. It indicated that the interfacial layer microstructure development and the presence of MnO at the interfacial layer had significant influence on the effective diffusion coefficient and interfacial layer growth rate. However, in the cases of the 2.5Mn and 3.0Mn steels in 0.20 wt% Al bath, the kinetic model could not predict the interfacial layer Al uptake, since the Fe-Al growth was Al limited. In fact, in these cases, additional Al was consumed for reducing their thicker surface MnO layer, resulted in limiting the dissolved Al available for Fe-Al growth. / Dissertation / Doctor of Science (PhD)
9

Net Neutrality - Do We Care? : A study regarding Swedish consumers' point-of-view upon Net Neutrality / Nätneutralitet - Vem bryr sig? : En studie rörande svenska konsumenters syn på Nätneutralitet

Patriksson, Andreas January 2017 (has links)
Net Neutrality implicates that all data being transmitted online is treated equal by Internet Service Providers. In 2016, the public debate regarding Net Neutrality in Sweden started growing as two major Mobile Network Operators were investigated by the Swedish Post and Telecom Authority for violation of European Union Net Neutrality regulations. Several studies have been conducted regarding Net Neutrality, most of them written in a legal, financial or technological perspective. This study takes another direction, aimed at understanding the consumer’s point of view regarding Net Neutrality. This study investigates whether or not consumers are aware of the subject and if so, how they value it. To measure this, an online survey was constructed, containing a total of 12 questions and statements. 77 people participated in the survey and out of these, 10 people participated in qualitative follow-up interviews. The interviews were semi-structured and individually designed according to each participant’s answers in the survey. This was done in order to gain a deeper understanding of the consumer’s reasoning while answering the survey. The results show that consumers lack knowledge regarding Net Neutrality. A major part of the consumers had not heard of the term or did not know the meaning of it, making it hard to determine whether or not the consumers value NN. However, when given a more concrete example of the implications of Internet Traffic Management from ISPs, the participants had a better understanding of what kind of implications NN could have on their Internet usage. They valued the implications of Net Neutrality, even though they did not know the theory of the term itself. The study also revealed that consumers have a big confidence in National Regulatory Authorities when it comes to looking after the openness of the Internet. Therefore, it is likely that National Regulatory Authorities must inform and educate consumers in the matter of Net Neutrality for them to value it and see its long-term implications. / Nätneutralitet innebär kortfattat att all data som skickas över Internet ska behandlas likvärdigt utav Internetleverantörer (ISP). Under 2016 växte debatten kring nätneutralitet i Sverige då två stycken mobiloperatörer utreddes utav Post- och Telestyrelsen. Båda dessa mobiloperatörer lanserade kampanjer till sina kunder som ansågs strida mot EU:s förordning 2015/2120 rörande nätneutralitet. Ett antal studier har redan gjorts på ämnet nätneutralitet, dock har de flesta haft en infallsvinkel där man tittat på juridiska, finansiella eller tekniska perspektiv. Den här studien har en annan infallsvinkel och riktar sig istället mot konsumenters syn på nätneutralitet. Den ämnar undersöka huruvida konsumenter känner till begreppet nätneutralitet och om de gör det, hur värderar de konceptet? För att undersöka detta konstruerades en online-enkät, innehållandes 12 frågor. 77 personer deltog i enkäten och utav dessa så deltog 10 personer i uppföljande, kvalitativa intervjuer. Intervjuerna var semi-strukturerade och individuella med frågor baserade på individens svar i enkäten. Dessa intervjuer var till för att ge en fördjupad förståelse av konsumenternas syn på nätneutralitet och deras resonemang kring svaren under enkäten. Resultaten visar att konsumenter, deltagande i den här studien, har låg kunskap kring nätneutralitet. Majoriteten utav deltagarna hade inte hört termen eller kände inte till dess mening, vilket gjorde det svårt att dra några slutsatser kring huruvida konsumenterna värderar konceptet. Men när konsumenterna fick ett mer konkret exempel på hur Internetleverantörers datahantering påverkar kundernas Internetanvändande så tycktes konsumenterna förstå vilka implikationer nätneutralitet kan ha på deras eget Internetanvändande. De tycktes således värdera innebörden av nätneutralitet, även om de inte förstod teorin kring konceptet. Studien påvisade också att konsumenter har en stor tilltro till vederbörande myndighet, Post- och Telestyrelsen här i Sverige, när det gäller att se efter Internets öppenhet och mångfald. Det är därför troligt att Post- och Telestyrelsen kommer att behöva informera och utbilda konsumenter rörande nätneutralitet för att få konsumenter att se värdet av och de långsiktiga implikationerna utav det.
10

[en] STUDY OF THE SYSTEM AL2O3-MNO / [pt] ESTUDO DO SISTEMA AL2O3-MNO: PROPRIEDADES TERMODINÂMICAS DO ÓXIDO AL2MNO4

ROGERIO NAVARRO CORREIA DE SIQUEIRA 16 January 2018 (has links)
[pt] No presente trabalho foram realizadas medidas de capacidade térmica à pressão constante do espinélio Al2MnO4 na faixa entre 2 e 873 K. No intervalo entre 2 e 300 K empregou-se um calorímetro de relaxação térmica. Os dados evidenciaram a presença de uma anomalia em torno de 33 K, cuja componente magnética pôde ser constatada mediante medidas de capacidade calorífica com campo magnético constante, bem como também medidas de magnetização específica como função da temperatura. A contribuição entrópica associada à mencionada anomalia foi considerada no cálculo da entropia molar a 298.15 K do óxido em questão (116.05 mais ou menos 5.2 J/mol.K), valor este consistente com valores da literatura para outros espinélios. Na faixa entre 323 e 873 K empregou-se um calorímetro diferencial de varredura. Os dados foram ajustados quantitativamente com o modelo de Berman e Brown, incluindo-se no ajuste o valor de capacidade térmica a 298.15 K, obtido via calorimetria de relaxação térmica. Empregando-se o valor de entropia molar determinado no presente trabalho, os parâmetros do modelo de Berman e Brown estimados com os dados em temperaturas elevadas, e uma estimativa disponível na literatura para a entalpia de formação do óxido Al2MnO4, construiu-se um modelo para a dependência térmica da energia de Gibbs do referido composto válido na faixa entre 298.15 e 2114 K. O modelo foi testado com sucesso no acesso termodinâmico das propriedades do sistema Al2O3-MnO. / [en] In the present work the constant pressure molar heat capacity of the spinel Al2MnO4 was measured between 2 K and 873 K. In the interval between 2 K and 300 K a relaxation calorimeter was employed. The data indicated the presence of a thermal anomaly around 33 K, whose magnetic component could be evidenced through measurements of the heat capacity with a constant applied magnetic field, and also through specific magnetization data as a function of temperature. The entropic contribution of the thermal anomaly was considered in the calculation of the molar entropy of the oxide at 298.15 K (116.05 more or less 5.2 J/mol.K), and the calculated value has proven to be consistent with values published earlier for other spinel compounds. In the interval between 323 and 873 K a differential scanning calorimeter was employed. The data were quantitatively modeled with the function proposed by Berman and Brown, including the heat capacity value obtained at 298.15 K accessed through the relaxation calorimeter route. By using the molar entropy at 298.15 K, the values of the parameter estimated for the Berman and Brown model with the heat capacity data at elevated temperatures, and an estimative for the heat of formation of the spinel Al2MnO4 extracted from the literature, it was possible to construct a model for the thermal dependence of the Gibbs energy of this compound valid between 298.15 K and 2114 K. The model was successfully tested in the thermodynamic assessment of the properties of the system Al2O3-MnO.

Page generated in 0.4104 seconds