• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 31
  • 25
  • 16
  • 14
  • 7
  • 4
  • 3
  • 1
  • Tagged with
  • 183
  • 37
  • 27
  • 25
  • 25
  • 25
  • 24
  • 21
  • 19
  • 17
  • 17
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Epitaxy of GaAs-based long-wavelength vertical cavity lasers

Asplund, Carl January 2003 (has links)
Vertical cavity lasers (VCLs) are of great interest aslow-cost, high-performance light sources for fiber-opticcommunication systems. They have a number of advantages overconventional edge-emitting lasers, including low powerconsumption, efficient fiber coupling and wafer scalemanufacturing/testing. For high-speed data transmission overdistances up to a few hundred meters, VCLs (or arrays of VCLs)operating at 850 nm wavelength is today the technology ofchoice. While multimode fibers are successfully used in theseapplications, higher transmission bandwidth and longerdistances require single-mode fibres and longer wavelengths(1.3-1.55 µm). However, long-wavelength VCLs are as yetnot commercially available since no traditional materialssystem offers the required combination of bothhigh-index-contrast distributed Bragg reflectors (DBRs) andhigh-gain active regions. Earlier work on long-wavelength VCLshas therefore focused on hybrid techniques, such as waferfusion between InP-based QWs and AlGaAs DBRs, but more recentlythe main interest in this field has shifted towardsall-epitaxial GaAs-based devices employing novel 1.3-µmactive materials. Among these, strained GaInNAs/GaAs QWs aregenerally considered one of the most promising approaches andhave received a great deal of interest. The aim of this thesis is to investigate monolithicGaAs-based long-wavelength (&gt;1.2 µm) VCLs with InGaAsor GaInNAs QW active regions. Laser structures - or partsthereof - have been grown by metal-organic vapor phase epitaxy(MOVPE) and characterized by various techniques, such ashigh-resolution x-ray diffraction (XRD), photoluminescence(PL), atomic force microscopy, and secondary ion massspectroscopy (SIMS). High accuracy reflectance measurementsrevealed that n-type doping is much more detrimental to theperformance of AlGaAs DBRs than previously anticipated. Asystematic investigation was also made of the deleteriouseffects of buried Al-containing layers, such as AlGaAs DBRs, onthe optical and structural properties of subsequently grownGaInNAs QWs. Both these problems, with their potential bearingon VCL fabrication, are reduced by lowering the DBR growthtemperature. Record-long emission wavelength InGaAs VCLs were fabricatedusing an extensive gain-cavity detuning. The cavity resonancecondition just below 1270 nm wavelength occurs at the farlong-wavelength side of the gain curve. Still, the gain is highenough to yield threshold currents in the low mA-regime and amaximum output power exceeding 1 mW, depending on devicediameter. Direct modulation experiments were performed on1260-nm devices at 10 Gb/s in a back-to-back configuration withopen, symmetric eye diagrams, indicating their potential foruse in high-speed transmission applications. These devices arein compliance with the wavelength requirements of emerging10-Gb/s Ethernet and SONET OC-192 standards and may turn out tobe a viable alternative to GaInNAs VCLs. <b>Keywords:</b>GaInNAs, InGaAs, quantum wells, MOVPE, MOCVD,vertical cavity laser, VCSEL, long-wavelength, epitaxy, XRD,DBR
92

Development of wide bandgap solid-state neutron detectors

Melton, Andrew Geier 19 May 2011 (has links)
In this work novel solid-state neutron detectors based on Gallium Nitride (GaN) have been produced and characterized. GaN is a radiation hard semiconductor which is commonly used in commercial optoelectronic devices. The important design consideration for producing GaN-based neutron detectors have been examined, and device simulations performed. Scintillators and p-i-n diode-type neutron detectors have been grown by metalorganic chemical vapor deposition (MOCVD) and characterized. GaN was found to be intrinsically neutron sensitive through the Nitrogen-14 (n, p) reaction. Neutron conversion layers which produce secondary ionizing radiation were also produced and evaluated. GaN scintillator response was found to scale highly linearly with nuclear reactor power, indicating that GaN-based detectors are suitable for use in the nuclear power industry. This work is the first demonstration of using GaN for neutron detection. This is a novel application for a mature semiconductor material. The results presented here provide a proof-of-concept for solid-state GaN-based neutron detectors which offer many potential advantages over the current state-of-the-art, including lower cost, lower power operation, and mechanical robustness. At present Helium-3 proportional counters are the preferred technology for neutron detection, however this isotope is extremely rare, and there is a global shortage. Meanwhile demand for neutron detectors from the nuclear power, particle physics, and homeland security sectors requires development of novel neutron detectors which are which are functional, cost-effective, and deployable.
93

Growth and Characterization of III-Nitrides Materials System for Photonic and Electronic Devices by Metalorganic Chemical Vapor Deposition

Yoo, Dongwon 09 July 2007 (has links)
A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (λ < 290 nm). These intrinsically solar-blind UV APDs will not require filters to operate in the solar-blind spectral regime of λ < 290 nm. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates, a high density of defects is usually introduced during the growth; thereby, causing a device failure by premature microplasma, which has been a major issue for GaN-based APDs. The extensive research on epitaxial growth and optimization of Al<sub>x</sub> Ga <sub>1-x</sub> N (0 ≤ x ≤ 1) grown on low dislocation density native bulk III-N substrates have brought UV APDs into realization. GaN and AlGaN UV <i> p-i-n </i> APDs demonstrated first and record-high true avalanche gain of > 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN <i>p-i-n </i> rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN<i> p-i-n </i> rectifiers on<i> n </i>- type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and lower forward resistance due to the reduction of current crowding at the bottom<i> n </i> -type layer. The AlGaN:Si nucleation layer was proven to provide excellent electrical properties while also acting as a good buffer role for subsequent GaN growth. The reverse breakdown voltage for a relatively thin 2.5 μm-thick<i> i </i>-region was found to be over -400V.
94

Controlling Factors of Cis/Trans Geometry in Ni and Co Diketonato Complexes

Weng, Tzu-Yu 03 September 2003 (has links)
Metal diketonato complexes are populate in recent ten years, because of diketone compound is easy to get and cheap and also have good volatility to be the precursor of MOCVD, they usually can be the materials of wafer processing by high technology electronics industries. Many scientists are trying to synthesis these diketonato complexes, and find out the better reactivity compounds to be the precursor of MOCVD. In order to knowing the decompose activities of these complexes, we are trying to compare the metal-oxygen bonds of these diketonato complexes in this paper. By the way, these diketonato complexes have difference geometry in cis and trans form, and also have conformation isomers between syn and anti form. We will compare and discuss the structures and controlling factors in these kinds of diketonato complexes in this paper.
95

Green light emitting diodes and laser diodes grown by metalorganic chemical vapor deposition

Lochner, Zachary Meyer 07 April 2010 (has links)
This thesis describes the development of III-Nitride materials for light emitting applications. The goals of this research were to create and optimize a green light emitting diode (LED) and laser diode (LD). Metalorganic chemical vapor deposition (MOCVD) was the technique used to grow the epitaxial structures for these devices. The active regions of III-Nitride based LEDs are composed of InₓGa₁₋ₓN, the bandgap of which can be tuned to attain the desired wavelength depending on the percent composition of Indium. An issue with this design is that the optimal growth temperature of InGaN is lower than that of GaN, making the growth temperature of the top p-layers critical to the device performance. Thus, an InGaN:Mg layer was used as the hole injection and p-contact layers for a green led, which can be grown at a lower temperature than GaN:Mg in order to maintain the integrity of the active region. However, the use of InGaN comes with its own set of drawbacks, specifically the formation of V-defects. Several methods were investigated to suppress these defects such as graded p-layers, short period supper lattices, and native GaN substrates. As a result, LEDs emitting at ~532 nm were realized. The epitaxial structure for a III-Nitride LD is more complicated than that of an LED, and so it faces many of the same technical challenges and then some. Strain engineering and defect reduction were the primary focuses of optimization in this study. Superlattice based cladding layers, native GaN substrates, InGaN waveguides, and doping optimization were all utilized to lower the probability of defect formation. This thesis reports on the realization of a 454 nm LD, with higher wavelength devices to follow the same developmental path.
96

Epitaxy of GaAs-based long-wavelength vertical cavity lasers

Asplund, Carl January 2003 (has links)
<p>Vertical cavity lasers (VCLs) are of great interest aslow-cost, high-performance light sources for fiber-opticcommunication systems. They have a number of advantages overconventional edge-emitting lasers, including low powerconsumption, efficient fiber coupling and wafer scalemanufacturing/testing. For high-speed data transmission overdistances up to a few hundred meters, VCLs (or arrays of VCLs)operating at 850 nm wavelength is today the technology ofchoice. While multimode fibers are successfully used in theseapplications, higher transmission bandwidth and longerdistances require single-mode fibres and longer wavelengths(1.3-1.55 µm). However, long-wavelength VCLs are as yetnot commercially available since no traditional materialssystem offers the required combination of bothhigh-index-contrast distributed Bragg reflectors (DBRs) andhigh-gain active regions. Earlier work on long-wavelength VCLshas therefore focused on hybrid techniques, such as waferfusion between InP-based QWs and AlGaAs DBRs, but more recentlythe main interest in this field has shifted towardsall-epitaxial GaAs-based devices employing novel 1.3-µmactive materials. Among these, strained GaInNAs/GaAs QWs aregenerally considered one of the most promising approaches andhave received a great deal of interest.</p><p>The aim of this thesis is to investigate monolithicGaAs-based long-wavelength (>1.2 µm) VCLs with InGaAsor GaInNAs QW active regions. Laser structures - or partsthereof - have been grown by metal-organic vapor phase epitaxy(MOVPE) and characterized by various techniques, such ashigh-resolution x-ray diffraction (XRD), photoluminescence(PL), atomic force microscopy, and secondary ion massspectroscopy (SIMS). High accuracy reflectance measurementsrevealed that n-type doping is much more detrimental to theperformance of AlGaAs DBRs than previously anticipated. Asystematic investigation was also made of the deleteriouseffects of buried Al-containing layers, such as AlGaAs DBRs, onthe optical and structural properties of subsequently grownGaInNAs QWs. Both these problems, with their potential bearingon VCL fabrication, are reduced by lowering the DBR growthtemperature.</p><p>Record-long emission wavelength InGaAs VCLs were fabricatedusing an extensive gain-cavity detuning. The cavity resonancecondition just below 1270 nm wavelength occurs at the farlong-wavelength side of the gain curve. Still, the gain is highenough to yield threshold currents in the low mA-regime and amaximum output power exceeding 1 mW, depending on devicediameter. Direct modulation experiments were performed on1260-nm devices at 10 Gb/s in a back-to-back configuration withopen, symmetric eye diagrams, indicating their potential foruse in high-speed transmission applications. These devices arein compliance with the wavelength requirements of emerging10-Gb/s Ethernet and SONET OC-192 standards and may turn out tobe a viable alternative to GaInNAs VCLs.</p><p><b>Keywords:</b>GaInNAs, InGaAs, quantum wells, MOVPE, MOCVD,vertical cavity laser, VCSEL, long-wavelength, epitaxy, XRD,DBR</p>
97

Untersuchungen zur Thermolyse der CVD-Precursoren Methyltrichlorsilan und Trimethoxyboran

Heinrich, Jens 22 February 2001 (has links) (PDF)
In dieser Arbeit werden Mechanismen zur thermischen CVD von Siliciumcarbid aus Methyltrichlorsilan (MTS) und von Bornitrid aus Trimethoxyboran-Ammoniak- Gasmischungen diskutiert. Dazu werden die gebildeten Schichten und die entstehenden Reaktionsgasphasen in Abhängigkeit von den Prozeßparametern Temperatur und Eduktgaszusammensetzung untersucht. Durch Zusatz der bei der MTS-Thermolyse entstehenden gasförmigen Produkte zum Eduktgasstrom können Korrelationen zwischen den Produktkonzentrationen in der Gasphase und deren Einfluß auf die abgeschiedenen Schichten aufgezeigt werden. An Hand dieser Ergebnisse wird für die MTS-Thermolyse ein Reaktionsschema aufgestellt, welches sowohl primäre und sekundäre Gasphasenreaktionen als auch Oberflächenreaktionen umfaßt. Darauf aufbauend wird eine Methode zur Ermittlung der Schichtzusammensetzung durch Analyse des Reaktionsabgases vorgestellt und mit den Ergebnissen der ESMA-Untersuchungen verglichen. Im zweiten Teil der Arbeit wird der Einfluß von Ammoniak auf die Thermolyse von Trimethoxyboran und die dabei entstehenden Schichten untersucht. Die Charakterisierung der Bornitrid/Boroxid-Schichten erfolgt durch Ramanspektroskopie. Zur qualitativen Analyse dünner BN-Schichten auf faserförmigen Substraten wird der Einsatz von oberflächenverstärkter Ramanspektroskopie vorgestellt.
98

Kupfer- und Ruthenium-Precursoren: Synthese, Charakterisierung und deren Verwendung zur Abscheidung metallischer Schichten nach dem CVD-Verfahren

Roth, Nina 05 October 2009 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit neuartigen Kupfer(I)- und Ruthenium(II)-komplexen und deren Verwendung als CVD-/ALD-Precursoren. Die Synthese Lewis-Basen-stabilisierter Kupfer(I)-β-Diketonat- bzw. -Carboxylat-Komplexe des Typs [LnMX] (M = Cu(I), X = Acetylacetonat, Iminopentenolat, Carboxylat; L = Phosphan PR3, Phos-phit P(OR)3; R = einbindiger, organischer Rest) standen hierbei im Vordergrund. Verbin-dungen des Typs [(PR3)MX] dienten als Ausgangsverbindungen zur Darstellung einkerni-ger Komplexe mit σ Donorliganden. Durch die Wahl der Lewis-Base sowie des β-Diketonato- bzw. Carboxylato-Fragmentes war es möglich, Einfluss auf die Eigenschaften der erhaltenen Komplexe zu nehmen. Somit waren auch die Untersuchung der thermischen Eigenschaften sowie das Abscheideverhalten der Komplexe während der MOCVD zu ana-lysieren. Thermogravimetrische Untersuchungen bzw. MOCVD-Versuche liessen Rück-schlüsse auf die Eignung der Komplexe des Typs [(PR3)MX] zur Abscheidung elementa-ren Kupfers zu. Des Weiteren wurde die Eignung von Ruthenium-Komplexen des Typs RuX2 (X = substituierte Cyclopentadienyle, 2,4-Dimethylpentadienyl, 4-Methylpent-3-en-2-on-yl) zur Erzeugung von elementaren bzw. oxidierten Rutheniums während MOCVD-Versuchen untersucht. Vorhergehende thermische Untersuchungen an den synthetisierten Komplexen liessen erste Rückschlüsse auf deren Eigenschaften zu. Da der Dampfdruck der für CVD-Zwecke eingesetzten Precursoren besonders interessant ist, wurden diese für die verwendeten Ruthenium-Komplexe bestimmt und sowohl untereinander als auch mit Lite-raturwerten verglichen. Ausgewählte Ruthenium-Komplexe wurden zur Erzeugung metal-lischer oder oxidischer Schichten während MOCVD-Versuchen eingesetzt.
99

Study of tin oxide for hydrogen gas sensor applications

Anand, Manoj 01 June 2005 (has links)
Tin oxide (SnO2) has been investigated and used as a gas sensing material for numerous applications from the very start of the sensor industry. Most of these sensors use semiconductors (mostly SnO2) as the sensing material. In this work, SnO2 was prepared using 2 techniques: firstly the MOCVD where we dope the sample with fluorine and secondly sputtering technique where samples are undoped in our case. These samples were tested at different conditions of temperature varying from room temperature to 150 degrees C, in ambient gas atmosphere of 200 CC Nitrogen (N2). The typical thickness of the sputtered samples was 1500 A with a sheet resistance of 300; and these sputtered samples were found to be more porous. These samples when tested in room temperature showed a change of -4 [mu]A change for 10% and -9 [mu]A for 90% of H2. While at higher temperatures (150 degrees C) the current change for 10% increased from -4 [mu[A to -2 mA showing that higher ambient temperatures increased the sensitivity of the samples. The repeatability of the samples after a period of 3 days were found to be well within 10%. The samples prepared by MOCVD were fluorine doped, the samples were conductive to 1 order of magnitude more than the sputtered ones. 3 different samples of approximate thicknesses 3000, 6000 and 9000 A were prepared and tested in this work, with typical resistivity of 6 /cm and the grains in this case are typically more compact. The conductive samples showed no response at room temperature, including the 6000 and 9000 A samples. While at higher temperatures (150degreesC) the 3000 A sample showed very sensitive response to H2. Also noticed was that the response was linear compared to the sputtered samples. The samples showed very good repeatability and sensitivity.
100

Characterisation of Step Coverage by Pulsed-Pressure Metalorganic Chemical Vapour Deposition: Titanium Dioxide Thin Films on 3-D Micro- and Nano-Scale Structures.

Siriwongrungson, Vilailuck January 2010 (has links)
An examination of the possibility of applying pulse pressure metalorganic chemical vapour deposition (PP-MOCVD) to conformal coating and an investigation of PP-MOCVD processing parameters were undertaken using the deposition of thin, conformal titanium dioxide (TiO₂) on 3-D featured and non-featured substrates. The characterisation of the conformality and wettability analysis of thin TiO₂ was carried out using titanium tetraisopropoxide (TTIP) dissolved in toluene as a precursor and featured silicon (Si) and silicon nitride (Si₃N₄) as substrates. The features on the substrates were in micro- and nano-scale with the aspect ratio up to 2:1. The processing parameters investigated were temperatures between 400 and 600°C, reactor base pressures from 50 to 200 Pa, injection volumes between 50 and 250 µl, precursor concentrations in the range of 0.15 to 0.50 mol% and pulsing times from 10 to 20 sec. The surface morphology and thickness were examined using a scanning electron microscope (SEM). The composition of the films was qualitatively identified by energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) and Raman spectroscopy were used to analyse the phase and grain size. The surface roughness and grain size were evaluated using atomic force microscopy (AFM). The optical properties were characterised using UV-VIS light spectroscopy. The anti-sticking characteristic was examined by wettability analysis, measuring the contact angle of the film with water. The research examined the relationships between processing parameters and growth rate, conformality, surface roughness, grain size, phase and water contact angle. A new measurement for thin film conformality was derived based on a statistical analysis of a large number of film thickness measurements on a fracture surface over the lithographed features. The best conformality of 0.95 was obtained for micro-scale features at the lowest temperature in the range of investigation, 400℃, with pulse exposure characterised by a base pressure of 100 Pa, TTIP concentration of 0.50 mol%, injection volume of 50 µl and pulsing time of 10 sec. Conformality for micro-scale features was in the range of 0.82 to 0.97 over a wide range of deposition temperatures. Conformality was as low as 0.45 over nano-scale structures at the higher exposure rate. The conformality decreased as the temperature and precursor concentration increased. The precursor injection volume was found to have minor influences on conformality. The growth rate increased as the temperature increased and reached the maximum at the deposition temperature of 450℃ with the precursor concentration of 0.50 mol% and injection volume of 100 µl. The base pressure and relaxation time had slight influences on the growth rate over the deposition temperature range of 400 to 500℃. The growth rate was increased as the precursor concentration and precursor injection volume increased. The deposited TiO₂ films exhibited columnar growth and anatase phase. The base pressure and pulsing time had no obvious effects on grain size and surface roughness. The grain size decreased as the deposition temperature increased. The surface roughness increased as the deposition temperature increased. Contact angles of over 100° were found with conformality of over 0.80. The variation in contact angle was related to the surface morphology of the deposited films. The contact angle increased as the grain size decreased. High wettability was found for films in the mid-range of pulse exposure, in this study at pulse exposure of 53, or at high deposition temperature, in this case at 600°C. The as-deposited TiO₂ thin films were hydrophobic depending on the surface morphology, surface roughness and grain size.

Page generated in 0.0263 seconds