Spelling suggestions: "subject:"model predictive control."" "subject:"model predictive coontrol.""
421 |
Design, optimization and validation of start-up sequences of energy production systems. / Conception, optimisation et validation des séquences de démarrage des systèmes de production d'énergieTica, Adrian 01 June 2012 (has links)
Cette thèse porte sur l’application des approches de commande prédictive pour l’optimisation des démarrages des centrales à cycles combinés. Il s’agit d’une problématique à fort enjeu qui pose des défis importants. L’élaboration des approches est progressive. Dans une première partie un modèle de centrale est construit et adapté à l’optimisation, en utilisant une méthodologie qui transforme des modèles physiques Modelica conçus pour la simulation en des modèles pour l’optimisation. Cette méthodologie a permis de construire une bibliothèque adaptée à l’optimisation. La suite des travaux porte sur l’utilisation du modèle afin d’optimiser phase par phase les performances du démarrage. La solution proposée optimise, en temps continu, le profil de charge des turbines en recherchant dans des ensembles de fonctions particulières. Le profil optimal est déterminé en considérant que celui-ci peut être décrit par une fonction paramétrée dont les paramètres sont calculés en résolvant un problème de commande optimale sous contraintes. La dernière partie des travaux consiste à intégrer cette démarche d’optimisation à temps continu dans une stratégie de commande à horizon glissant. Cette approche permet d’une part de corriger les dérives liées aux erreurs de modèles et aux perturbations, et d’autre part, d’améliorer le compromis entre le temps de calcul et l’optimalité de la solution. Cette approche de commande conduit cependant à des temps de calcul importants. Afin de réduire le temps de calcul, une structure de commande prédictive hiérarchisée avec deux niveaux, en travaillant à des échelles de temps et sur des horizons différents, a été proposée. / This thesis focuses on the application of model predictive control approaches to optimize the combined cycle power plants start-ups. Generally, the optimization of start-up is a very problematic issue that poses significant challenges. The development of the proposed approaches is progressive. In the first part a physical model of plant is developed and adapted to optimization purposes, by using a methodology which transforms Modelica model components into optimization-oriented models. By applying this methodology, a library suitable for optimization purposes has been built.In the second part, based on the developed model, an optimization procedure to improve the performances of the start-up phases is suggested. The proposed solution optimizes, in continuous time, the load profile of the turbines, by seeking in specific sets of functions. The optimal profile is derived by considering that this profile can be described by a parameterized function whose parameters are computed by solving a constrained optimal control problem. In the last part, the open-loop optimization procedure has been integrated into a receding horizon control strategy. This strategy represents a robust solution against perturbation and models errors, and enables to improve the trade-off between computation time and optimality of the solution. Nevertheless, the control approach leads to a significant computation time. In order to obtain real-time implementable results, a hierarchical model predictive control structure with two layers, working at different time scales and over different prediction horizons, has been proposed.
|
422 |
Moderní metody řízení střídavých elektrických pohonů / AC Drives Modern Control AlgorithmsGraf, Miroslav January 2012 (has links)
This thesis describes the theory of model predictive control and application of the theory to synchronous drives. It shows explicit and on-line solutions and compares the results with classical vector control structure.
|
423 |
Commande prédictive non-linéaire. Application à la production d'énergie. / Nonlinear predictive control. Application to power generationFouquet, Manon 30 March 2016 (has links)
Cette thèse porte sur l'optimisation et la commande prédictive des centrales de production d'énergie en utilisant des modèles physiques des installations. Les modèles sont réalisés à l'aide du langage Modelica, un langage équationnel adapté à la modélisation de systèmes multi-physiques. La modélisation de systèmes physiques dans ce langage est présentée dans une première partie, ainsi que les traitements symboliques réalisés par les compilateurs Modelica pour mettre les modèles sous une forme adaptée à l'optimisation. On présente dans une seconde partie le développement d'une méthode d'optimisation dynamique hybride pour les centrales de production d'énergie, qui fournit une trajectoire optimisée de l'installation sur un horizon long. Les trajectoires calculées incluent les trajectoires des commandes continues ainsi que les décisions d'engagement des différents équipements. L'algorithme d'optimisation combine la méthode de collocation et une méthode nommée Sum Up Rounding (SUR) pour la prise en compte des décisions d'engagement. Un algorithme de commande prédictive (MPC) est enfin introduit afin de garantir le suivi des trajectoires optimales et de prendre en compte en temps réel la présence de perturbations et les erreurs du modèle d'optimisation. L'algorithme MPC utilise des modèles linéarisés tangents générés automatiquement à partir du modèle non linéaire. / This thesis deals with hybrid optimal control and Model Predictive Control (MPC) of power plants by use of physical models. Models of the facilities are developped with Modelica, an equation based language tailored for modelling multi-physics systems. Modeling of physical systems with Modelica is introduced in a first part, as well as some of the symbolic processing done by Modelica compilers that transform the original model to a form suited for optimization. Then, a method to solve optimal control problems on hybrid systems (such as power plants) is presented. This methods provides an optimal trajectory for the power plant on a long horizon. The optimal trajectory computed by the method includes the trajectories of continuous inputs as well as switching decisions for components in the plant. The optimization algorithm combines the collocation method and a method named Sum Up Rounding (SUR) for dealing with switches. Finally, a Model Predictive Controller is developped in order to follow this optimal trajectory in real time, and to cope with disturbances on the actual system and modelling errors. The proposed MPC uses tangent linear models of the plant that are derived automatically from the nonlinear model.
|
424 |
Constrained control for time-delay systems. / Commande sous contraintes pour des systèmes à retardLombardi, Warody 23 September 2011 (has links)
Le thème principal de ce mémoire est la commande sous contraintes pour des systèmes à retard, en tenant compte de la problématique d’échantillonnage (où les informations concernant le système en temps continu sont, par exemple, envoyées par un réseau de communication) et de la présence de contraintes sur les trajectoires du système et sur l’entrée de commande. Pendant le processus d’échantillonnage, le retard variable dans le temps peut être traité comme une incertitude, le but étant de confiner cette variation dans un polytope, de façon à couvrir toutes les variations possibles du retard. Pour stabiliser des systèmes à retard, nous nous sommes basés sur la théorie de Lyapunov. En utilisant cette méthode, nous pouvons trouver un retour d’état qui stabilise le système malgré la présence du retard variable dans la boucle. Une autre possibilité est l’utilisation des candidates de Lyapunov-Krasovskii. La théorie des ensembles invariants est largement utilisée dans ce manuscrit, car il est souhaitable d’obtenir une région de ≪ sûreté ≫, ou le comportement du système est connu, en dépit de la présence du retard (variable) et des contraintes sur les trajectoires du système. Lorsqu’ils sont obtenus dans l’espace d’état augmenté, les ensembles invariants sont très complexes, car la dimension de l’espace Euclidien sera proportionnelle à la taille du système mais aussi à la taille du retard. Le concept de D-invariance est ainsi proposé. La commande prédictive (en anglais MPC) est présentée, pour tenir compte des contraintes sur les trajectoires et appliquer une commande optimale à l’entrée du système. / The main interest of the present thesis is the constrained control of time-delay system, more specifically taking into consideration the discretization problem (due to, for example, a communication network) and the presence of constraints in the system’s trajectories and control inputs. The effects of data-sampling and modeling problem are studied in detail, where an uncertainty is added into the system due to additional effect of the discretization and delay. The delay variation with respect to the sampling instants is characterized by a polytopic supra-approximation of the discretization/delay induced uncertainty. Some stabilizing techniques, based on Lyapunov’s theory, are then derived for the unconstrained case. Lyapunov-Krasovskii candidates were also used to obtain LMI conditions for a state feedback, in the ``original” state-space of the system. For the constrained control purposes, the set invariance theory is used intensively, in order to obtain a region where the system is ``well-behaviored”, despite the presence of constraints and (time-varying) delay. Due to the high complexity of the maximal delayed state admissible set obtained in the augmented state-space approach, in the present manuscript we proposed the concept of set invariance in the ``original” state-space of the system, called D-invariance. Finally, in the las part of the thesis, the MPC scheme is presented, in order to take into account the constraints and the optimality of the control solution.
|
425 |
Commande prédictive des systèmes hybrides et application à la commande de systèmes en électronique de puissance. / Predictive control of hybrid systems and its application to the control of power electronics systemsVlad, Cristina 21 March 2013 (has links)
Actuellement la nécessité des systèmes d’alimentation d’énergie, capables d’assurer un fonctionnement stable dans des domaines de fonctionnement assez larges avec des bonnes performances dynamiques (rapidité du système, variations limitées de la tension de sortie en réponse aux perturbations de charge ou de tension d’alimentation), devient de plus en plus importante. De ce fait, cette thèse est orientée sur la commande des convertisseurs de puissance DC-DC représentés par des modèles hybrides.En tenant compte de la structure variable de ces systèmes à commutation, un modèle hybride permet de décrire plus précisément le comportement dynamique d’un convertisseur dans son domaine de fonctionnement. Dans cette optique, l’approximation PWA est utilisée afin de modéliser les convertisseurs DC-DC. A partir des modèles hybrides développés, on s’est intéressé à la stabilisation des convertisseurs au moyen des correcteurs à gains commutés élaborés sur la base de fonctions de Lyapunov PWQ, et à l’implantation d’une commande prédictive explicite, en considérant des contraintes sur l’entrée de commande. La méthode de modélisation et les stratégies de commande proposées ont été appliquées sur deux topologies : un convertisseur buck, afin de mieux maîtriser le réglage des correcteurs et un convertisseur flyback avec filtre d’entrée. Cette dernière topologie nous a permis de répondre aux difficultés du point de vue de la commande (comportement à déphasage non-minimal) rencontrées dans la majorité des convertisseurs DC-DC. Les performances des commandes élaborées ont été validées en simulation sur les topologies considérées et expérimentalement sur une maquette du convertisseur buck. / Lately, power supply systems, guaranteeing the global stability for large enough operation ranges with good dynamic performances (small settling time, bounded overshoot of the output voltage in the presence of load or supply voltage variations), are strongly needed. Therefore, this thesis deals with control problems of DC-DC power converters represented by hybrid models.Considering the variable structure of these switched systems, a hybrid model describes more precisely the converter’s dynamics in its operating domain. From this perspective, a PWA (piecewise affine) approximation is used in order to model the DC-DC converters. Based on the developed hybrid models, first we have designed a stable piecewise linear state-feedback controller using piecewise quadratic (PWQ) Lyapunov functions, and secondly, we have implemented an explicit predictive control law taking into account constraints on the control input. The hybrid modeling technique and the proposed control strategies were applied on two different topologies of converters: a buck converter, in order to have a thorough knowledge of the controllers’ tuning, and a flyback converter with an input filter. This last topology, allowed us to manage different control problems (non-minimum phase behavior) encountered in the majority of topologies of DC-DC power converters. The controllers’ performances were validated in simulation on both considered topologies and also experimentally on buck converter.
|
426 |
Demand-side management in office buildings in Kuwait through an ice-storage assisted HVAC system with model predictive controlAl-Hadban, Yehya January 2005 (has links)
Examining methods for controlling the electricity demand in Kuwait was the main
objective and motivation of this researchp roject. The extensiveu se of air-conditioning
for indoor cooling in office and large commercial buildings in Kuwait and the Gulf
States represents a major part of the power and electricity consumption in such
countries. The rising electricity generation cost and growing rates of consumption
continuously demand the construction new power plants. Devising and enforcing
Demand-SideM anagemen(t DSM) in the form of energye fficient operations trategies
was the response of this research project to provide a means to rectify this situation
using the demand-side management technique known as demand levelling or load
shifting. State of the art demand-sidem anagementte chniquesh ave been examined
through the developmenot f a model basedp redictive control optimisations trategyf or
an integrateda ndm odulara pproachto the provisiono f ice thermals torage.
To evaluate the potential of ice-storage assisted air-conditioning systems in flattening
the demand curve at peak times during the summer months in Kuwait, a model of a
Heating, Ventilation, and Air-conditioning (HVAC) plant was developed in Matlab. The
model engaged the use of model based predictive control (MPQ as an optimisation tool
for the plant as a whole. The model with MPC was developed to chose and decide on
which control strategy to operate the integrated ice-storage HVAC plant. The model
succeeded in optimising the operation of the plant and introduced encouraging
improvement of the performance of the system as a whole.
The concept of the modular ice-storage system was introduced through a control zoning
strategy based on zonal orientation. It is believed that such strategy could lead to the
modularisation of ice-storage systems. Additionally, the model was examined and tested
in relation to load flattening and demonstrated promising enhancement in the shape of
the load curve and demonstrated flattened demand curves through the employed
strategy. When compared with measured data from existing buildings, the model
showed potential for the techniques utilised to improve the load factor for office
buildings.
|
427 |
Demand Response in Smart GridZhou, Kan 16 April 2015 (has links)
Conventionally, to support varying power demand, the utility company must prepare to supply more electricity than actually needed, which causes inefficiency and waste. With the increasing penetration of renewable energy which is intermittent and stochastic, how to balance the power generation and demand becomes even more challenging. Demand response, which reschedules part of the elastic load in users' side, is a promising technology to increase power generation efficiency and reduce costs. However, how to coordinate all the distributed heterogeneous elastic loads efficiently is a major challenge and sparks numerous research efforts.
In this thesis, we investigate different methods to provide demand response and improve power grid efficiency.
First, we consider how to schedule the charging process of all the Plugged-in Hybrid Electrical Vehicles (PHEVs) so that demand peaks caused by PHEV charging are flattened. Existing solutions are either
centralized which may not be scalable, or decentralized based on
real-time pricing (RTP) which may not be applicable immediately for many markets.
Our proposed PHEV charging approach does not need
complicated, centralized control and can be executed online in a distributed manner.
In addition, we extend our approach and apply it to the distribution grid to solve the bus congestion and voltage drop problems by controlling the access probability of PHEVs. One of the advantages of our algorithm is that it does not need accurate predictions on base load and future users' behaviors. Furthermore, it is deployable even when the grid size is large.
Different from PHEVs, whose future arrivals are hard to predict, there is another category of elastic load, such as Heating Ventilation and Air-Conditioning (HVAC) systems, whose future status can be predicted based on the current status and control actions. How to minimize the power generation cost using this kind of elastic load is also an interesting topic to the power companies. Existing work usually used HVAC to do the load following or load shaping based on given control signals or objectives. However, optimal external control signals may not always be available. Without such control signals, how to make a tradeoff between the fluctuation of non-renewable power generation and the limited demand response potential of the elastic load, and to guarantee user comfort level, is still an open problem.
To solve this problem, we first model the temperature evolution process of a room and propose an approach to estimate the key parameters of the model.
Then, based on the model predictive control, a centralized and a distributed algorithm are proposed to minimize the fluctuation and maximize the user comfort level. In addition, we propose a dynamic water level adjustment algorithm to make the demand response always available in two directions. Extensive simulations based on practical data sets show that the proposed algorithms can effectively reduce the load fluctuation.
Both randomized PHEV charging and HVAC control algorithms discussed above belong to direct or centralized load shaping, which has been heavily investigated. However, it is usually not clear how the users are compensated by providing load shaping services. In the last part of this thesis, we investigate indirect load shaping in a distributed manner. On one hand, we aim to reduce the users' energy cost by investigating how to fully utilize the battery pack and the water tank for the Combined Heat and Power (CHP) systems. We first formulate the queueing models for the CHP systems, and then propose an algorithm based on the Lyapunov optimization technique which does not need any statistical information about the system dynamics. The optimal control actions can be obtained by solving a non-convex optimization problem. We then discuss when it can be converted into a convex optimization problem. On the other hand, based on the users' reaction model, we propose an algorithm, with a time complexity of O(log n), to determine the RTP for the power company to effectively coordinate all the CHP systems and provide distributed load shaping services. / Graduate
|
428 |
Financial and computational models in electricity marketsXu, Li 22 May 2014 (has links)
This dissertation is dedicated to study the design and utilization of financial contracts and pricing mechanisms for managing the demand/price risks in electricity markets and the price risks in carbon emission markets from different perspectives. We address the issues pertaining to the efficient computational algorithms for pricing complex financial options which include many structured energy financial contracts and the design of economic mechanisms for managing the risks associated with increasing penetration of renewable energy resources and with trading emission allowance permits in the restructured electric power industry. To address the computational challenges arising from pricing exotic energy derivatives designed for various hedging purposes in electricity markets, we develop a generic computational framework based on a fast transform method, which attains asymptotically optimal computational complexity and exponential convergence. For the purpose of absorbing the variability and uncertainties of renewable energy resources in a smart grid, we propose an incentive-based contract design for thermostatically controlled loads (TCLs) to encourage end users' participation as a source of DR. Finally, we propose a market-based approach to mitigate the emission permit price risks faced by generation companies in a cap-and-trade system. Through a stylized economic model, we illustrate that the trading of properly designed financial options on emission permits reduces permit price volatility and the total emission reduction cost.
|
429 |
De l'instrumentation au contrôle optimal prédictif pour la performance énergétique du bâtiment / From instrumentation to optimal predictive control towards buildings energy efficiencyArtiges, Nils 25 January 2016 (has links)
Face aux forts besoins de réduction de la consommation énergétique et de l’impact environnemental,le bâtiment d’aujourd’hui vise la performance en s’appuyant sur des sourcesd’énergie de plus en plus diversifiées (énergies renouvelables), une enveloppe mieux conçue(isolation) et des systèmes de gestion plus avancés. Plus la conception vise la basse consommation,plus les interactions entre ses composants sont complexes et peu intuitives. Seule unerégulation plus intégrée permettrait de prendre en compte cette complexité et d’optimiser lefonctionnement pour atteindre la basse consommation sans sacrifier le confort.Les techniques de commande prédictive, fondées sur l’utilisation de modèles dynamiqueset de techniques d’optimisation, promettent une réduction des consommations et de l’inconfort.Elles permettent en effet d’anticiper l’évolution des sources et des besoins intermittentstout en tirant parti de l’inertie thermique du bâtiment, de ses systèmes et autres élémentsde stockage. Cependant, dans le cas du bâtiment, l’obtention d’un modèle dynamique suffisammentprécis présente des difficultés du fait d’incertitudes importantes sur les paramètresdu modèle et les sollicitations du système. Les avancées récentes dans le domaine de l’instrumentationdomotique constituent une opportunité prometteuse pour la réduction de cesincertitudes, mais la conception d’un tel système pour une telle application n’est pas triviale.De fait, il devient nécessaire de pouvoir considérer les problématiques de monitoring énergétique,d’instrumentation, de commande prédictive et de modélisation de façon conjointe.Cette thèse vise à identifier les liens entre commande prédictive et instrumentation dansle bâtiment, en proposant puis exploitant une méthode générique de modélisation du bâtiment,de simulation thermique et de résolution de problèmes d’optimisation. Cette méthodologiemet en oeuvre une modélisation thermique multizone du bâtiment, et des algorithmesd’optimisation reposant sur un modèle adjoint et les outils du contrôle optimal. Elle a étéconcrétisée dans un outil de calcul permettant de mettre en place une stratégie de commandeprédictive comportant des phases de commande optimale, d’estimation d’état et decalibration.En premier lieu, nous étudions la formulation et la résolution d’un problème de commandeoptimale. Nous abordons les différences entre un tel contrôle et une stratégie de régulationclassique, entre autres sur la prise en compte d’indices de performance et de contraintes. Nousprésentons ensuite une méthode d’estimation d’état basée sur l’identification de gains thermiquesinternes inconnus. Cette méthode d’estimation est couplée au calcul de commandeoptimale pour former une stratégie de commande prédictive.Les valeurs des paramètres d’un modèle de bâtiment sont souvent très incertaines. Lacalibration paramétrique du modèle est incontournable pour réduire les erreurs de prédictionet garantir la performance d’une commande optimale. Nous appliquons alors notreméthodologie à une technique de calibration basée sur des mesures de températures in situ.Nous ouvrons ensuite sur des méthodes permettant d’orienter le choix des capteurs à utiliser(nombre, positionnement) et des paramètres à calibrer en exploitant les gradients calculéspar la méthode adjointe.La stratégie de commande prédictive a été mise en oeuvre sur un bâtiment expérimentalprès de Chambéry. Dans le cadre de cette étude, l’intégralité du bâtiment a été modélisé,et les différentes étapes de notre commande prédictive ont été ensuite déployées de mainière séquentielle. Cette mise en oeuvre permet d’étudier les enjeux et les difficultés liées àl’implémentation d’une commande prédictive sur un bâtiment réel.Cette thèse est issue d’une collaboration entre le CEA Leti, l’IFSTTAR de Nantes et leG2ELab, et s’inscrit dans le cadre du projet ANR PRECCISION. / More efficient energy management of buildings through the use of Model Predictive Control(MPC) techniques is a key issue to reduce the environmental impact of buildings. Buildingenergy performance is currently improved by using renewable energy sources, a betterdesign of the building envelope (insulation) and the use of advanced management systems.The more the design aims for high performance, the more interactions and coupling effectsbetween the building, its environment and the conditions of use are important and unintuitive.Only a more integrated regulation would take in account this complexity, and couldhelp to optimize the consumption without compromising the comfort.Model Predictive Control techniques, based on the use of dynamic models and optimizationmethods, promise a reduction of consumption and discomfort. They can generate energysavings by anticipating the evolution of renewable sources and intermittent needs, while takingadvantage of the building thermal inertia and other storage items. However, in the caseof buildings, obtaining a good dynamic model is tough, due to important uncertainties onmodel parameters and system solicitations.Recent advances in the field of wireless sensor networks are fostering the deployment ofsensors in buildings, and offer a promising opportunity to reduce these errors. Nevertheless,designing a sensor network dedicated to MPC is not obvious, and energy monitoring,instrumentation, modeling and predictive control matters must be considered jointly.This thesis aims at establishing the links between MPC and instrumentation needs inbuildings. We propose a generic method for building modeling, thermal simulation andoptimization. This methodology involves a multi-zone thermal model of the building, andefficient optimization algorithms using an adjoint model and tools from the optimal controltheory. It was implemented in a specific toolbox to develop a predictive control strategywith optimal control phases, state estimation phases and model calibration.At first, we study the formulation and resolution of an optimal control problem. We discussthe differences between such a control and a conventional regulation strategy, throughperformance indicators. Then, we present a state estimation method based on the identificationof unknown internal gains. This estimation method is subsequently coupled with theoptimal control method to form a predictive control strategy.As the parameters values of a building model are often very uncertain, parametric modelcalibration is essential to reduce prediction errors and to ensure the MPC performance. Consequently,we apply our methodology to a calibration technique based on in situ temperaturemeasurements. We also discuss how our approach can lead to selection techniques in orderto choose calibrated parameters and sensors for MPC purposes.Eventually, the predictive control strategy was implemented on an experimental building,at CEA INES, near Chambéry. The entire building was modeled, and the different steps ofthe control strategy were applied sequentially through an online supervisor. This experimentgave us a useful feedback on our methodology on a real case.This thesis is the result of a collaboration between CEA Leti, IFSTTAR Nantes andG2ELab, and is part of the ANR PRECCISION project.
|
430 |
Demand-side management in office buildings in Kuwait through an ice-storage assisted HVAC system with model predictive controlAl-Hadban, Yehya January 2005 (has links)
Examining methods for controlling the electricity demand in Kuwait was the main objective and motivation of this researchp roject. The extensiveu se of air-conditioning for indoor cooling in office and large commercial buildings in Kuwait and the Gulf States represents a major part of the power and electricity consumption in such countries. The rising electricity generation cost and growing rates of consumption continuously demand the construction new power plants. Devising and enforcing Demand-SideM anagemen(t DSM) in the form of energye fficient operations trategies was the response of this research project to provide a means to rectify this situation using the demand-side management technique known as demand levelling or load shifting. State of the art demand-sidem anagementte chniquesh ave been examined through the developmenot f a model basedp redictive control optimisations trategyf or an integrateda ndm odulara pproachto the provisiono f ice thermals torage. To evaluate the potential of ice-storage assisted air-conditioning systems in flattening the demand curve at peak times during the summer months in Kuwait, a model of a Heating, Ventilation, and Air-conditioning (HVAC) plant was developed in Matlab. The model engaged the use of model based predictive control (MPQ) as an optimisation tool for the plant as a whole. The model with MPC was developed to chose and decide on which control strategy to operate the integrated ice-storage HVAC plant. The model succeeded in optimising the operation of the plant and introduced encouraging improvement of the performance of the system as a whole. The concept of the modular ice-storage system was introduced through a control zoning strategy based on zonal orientation. It is believed that such strategy could lead to the modularisation of ice-storage systems. Additionally, the model was examined and tested in relation to load flattening and demonstrated promising enhancement in the shape of the load curve and demonstrated flattened demand curves through the employed strategy. When compared with measured data from existing buildings, the model showed potential for the techniques utilised to improve the load factor for office buildings.
|
Page generated in 0.1013 seconds