Spelling suggestions: "subject:"modelo dde revisão"" "subject:"modelo dee revisão""
21 |
Modelagem para concessão de crédito a pessoas físicas em empresas comerciais : da decisão binária para a decisão monetáriaSelau, Lisiane Priscila Roldão January 2012 (has links)
A presente tese tem como objetivo propor um modelo de previsão para estimar o lucro médio esperado na concessão de crédito para pessoas físicas em empresas comerciais, obtendo assim uma medida monetária para dar suporte à tomada de decisão. O modelo proposto foi desenvolvido em três grandes etapas: 1) pré-processamento; 2) modelos de classificação; e 3) modelo de previsão do risco monetário. A primeira etapa inclui três passos: (i) delimitação da população, (ii) seleção da amostra, e (iii) análise preliminar. Na segunda etapa mais dois passos são necessários: (i) construção dos modelos, e (ii) qualidade dos modelos. Por fim, a última etapa trata das definições para construção do modelo de previsão do risco monetário propriamente dito, que utilizou os seguintes métodos: (i) ensemble, (ii) hybrid, e (iii) regressão linear múltipla. A exequibilidade do modelo proposto foi testada em dados reais de concessão de crédito. São avaliados os resultados de utilização do modelo de previsão, de forma a verificar o potencial aumento nos ganhos a partir da concessão do crédito, comparando quatro cenários: (i) sem utilizar nenhum modelo de previsão de risco de crédito; (ii) utilizando o modelo de classificação obtido com a regressão logística; (iii) utilizando o modelo de classificação obtido com a rede neural; e (iv) utilizando o modelo proposto para previsão do risco monetário. O modelo construído demonstrou resultados promissores na previsão do lucro médio esperado, apresentando um aumento estimado de 94,97% em comparação com o cenário sem uso de modelo de previsão, e um aumento de 26,08% quando comparado com o cenário de uso do modelo de classificação obtido com regressão logística. Uma análise de sensibilidade dos resultados com variações na margem de lucro por transação também foi realizada, evidenciando sua robustez. Nesse sentido, o modelo proposto se mostra efetivo como ferramenta de apoio para gestão no processo de decisão de concessão de crédito. / This thesis aims to propose a forecasting model to estimate the expected average profit in lending to individuals in commercial companies, thus obtaining a monetary measure to support decision making. The proposed model was developed in three major stages: 1) preprocessing, 2) classification models, and 3) model to forecast the currency risk. The first stage includes three steps: (i) delimitation of the population, (ii) sample selection, and (iii) preliminary analysis. In the second stage two more steps are necessary: (i) construction of models, and (ii) quality of the models. Finally, the last stage is regarding to the definitions for the construction of model prediction of the currency risk itself, which used the following methods: (i) ensemble, (ii) hybrid, and (iii) multiple linear regressions. The feasibility of the proposed model was tested on real data of grant credit. Results are evaluated using the prediction model in order to verify the potential increase in profits from the grant credit, comparing four scenarios: (i) without using any prevision model of credit risk, (ii) using the classification model obtained by logistic regression, (iii) using the classification model obtained with the neural network, and (iv) using the model to forecast the currency risk. The constructed model showed promising results in predicting the expected average profits, with an estimated increase of 94.97% compared to the scenario without the use of forecasting model, and an increase of 26.08% compared with the scenario of the classification model obtained by logistic regression. A sensitivity analysis of the results with variations in the profit margin per transaction was also performed, demonstrating its robustness. Accordingly, the proposed model proved effective as a support tool for management in the decision to grant credit.
|
22 |
Comparação de modelos de previsão de volatilidade com dados diários e intradiários utilizando como função perda a lucratividade no mercado de derivativosMöbus, Thiago Forell January 2012 (has links)
Desde Markowitz (1952), a volatilidade tem ocupado um papel de grande importância dentro da moderna teoria das finanças. Durante muito tempo, a mensuração da volatilidade tem sido realizada a partir de dados diários. No entanto, a disponibilização de dados intradiários, somada à redução do custo de aquisição destes, tem permitido a criação de modelos baseados nestes dados, o que permite incorporar mais informação, e em teoria, proporcionar previsões mais eficientes em comparação aos modelos que incorporam dados diários apenas. Dessa forma, o objetivo foi verificar se a modelagem da volatilidade a partir da utilização de dados diários é mais eficiente que a modelagem a partir de dados diários em termos de previsão da volatilidade futura. Utilizou-se, para comparar os modelos, a lucratividade de operações estruturadas no mercado de derivativos entre janeiro e abril de 2011. Os resultados demonstram que tantos os modelos baseados em dados diários como intradiarios apresentaram resultados satisfatórios em termos de previsão da volatilidade futura, tendo, entretanto, os modelos intradiários apresentado mais consistentes se comparado aos modelos diários, além de serem mais simples de serem estimados. / Since Markowitz (1952), volatility has played a major role in modern finance theory. For a long time, the measurement of volatility has been made from daily data. However, the availability of intraday data, added to reduce of the cost of these has allowed the creation of models based on these data, which allows to incorporate more information, and, in theory, provide more efficient forecasts compared to models that incorporate daily data only. Thus, the objective was to verify if the modeling of volatility from the use of daily data is more efficient than the model from daily data in terms of forecasting future volatility. Was used to compare the models, the profitability of structured transactions in the derivatives market between January and April 2011. The results show that both daily and intraday models showed satisfactory results in terms of forecasting future volatility, with, however, higher consistent of intraday models compared to daily models, being simpler to estimated them too.
|
23 |
Variáveis macroeconômicas e retorno real do Ibovespa : uma avaliação linear e não-linearRamos, Pedro Lutz January 2009 (has links)
A relação entre Variáveis Macroeconômicas e o Retorno de Ações é de alta importância para pesquisas econômicas e financeiras, já que, quando descoberto, um mecanismo de conhecer ou prever o impacto dessas variáveis oportuniza uma melhor performance de investidores no mercado acionário. Nesse sentido, nosso trabalho testa nove variáveis macroeconômicas (Preço de Commodities, Taxa de Desemprego, Inflação, Agregados Monetários, Taxas de juros, Relative Money Market Rate (RMM), Produção Industrial, Hiato do Produto (GAP) e Taxa de juros dos EUA) contra o retorno real do Ibovespa, empregando regressões lineares, como tradicional na literatura, e modelos de mudança de regime markoviana (MSM), para avaliar melhor o impacto e poder de previsão do retorno sob uma economia tão perturbada por planos econômicos e crises financeiras. Além disso, realizamos uma rigorosa avaliação do poder preditivo através de testes dentro e fora da amostra, incluindo avaliações dos coeficientes estimados defasados, critérios de Informação de AIC e BIC, Razões de Erro Quadrático Médio e o Erro Absoluto Médio e testes de encompassing de Diebold e Mariano (1995), de Clark e Mccracken (2001) e de Mccracken (2007), combinados aos novos valores assintóticos de Clark e Mccracken (2001,2004). Os resultados indicam que o Ibovespa possui dois regimes, e que a variável Hiato do Produto se destaca por ser a variável mais significativa e de maior poder de previsão, tanto nos modelos lineares como nos nãolineares. Além dessa, a variável RMM, também se mostrou capacitada para prever o retorno quando estimada no MSM, assim como as variáveis inflação e agregados monetários também apresentaram poder preditivo quando acompanhados da variável GAP. Entretanto, Produção industrial e taxa de juros não tiveram qualquer evidência de capacidade preditiva. Por fim, nos horizontes trimestrais e semestrais, os MSM tiveram dificuldade de encontrar os diferentes regimes, e por isso, não conseguiram se mostrar sistematicamente superiores aos modelos lineares. / The relationship between Macroeconomic Variables and stock returns is of high importance for economic and financial research because, when discovered, a mechanism to know or predict the impact of these variables allows a better performance of investors in the stock market In this sense, our research tests nine macroeconomic variables (Commodities Prices, Unemployment Rate, Inflation, Money Stock, Interest Rate, Relative Money Market Rate (RMM), Industrial Production, Output Gap (GAP) and United States Interest Rate) versus the Ibovespa Real Stock Return, with linear models, as in traditional literature, and with Markov Switching Models, to gauge the impact and the predictive power of the assumption of an economy so troubled by economic plans and financial crises. In addition, we conducted a rigorous predictive ability evaluation by testing in-sample and out-of-sample, including a lagged coefficient estimated evaluation, information criteria of Akaike and Schwarz, Mean-square Error, Absolute Mean Error and encompassing tests of Diebold e Mariano (1995), Clark e Mccracken (2001) and Mccracken (2007) combined with the new asymptotic values of Clark e Mccracken (2001,2004). The results indicated that the Ibovespa has two states and the Output Gap variable stands out for being the most significant variable and with the greatest predictive ability for both linear and nonlinear models. Besides, the RMM variable has also shown to be able to predict the stock return when estimated in the MSM. Furthermore, the inflation and money stock variable also presents predict ability when estimated models is addicted with GAP variable. Industrial production and interest rates had no evidence of predictive ability. Finally, in the quarterly and semiannual horizons, the MSM had difficulty in finding the different regimes, and therefore failed to show themselves consistently higher than the linear models.
|
24 |
Penalizações tipo lasso na seleção de covariáveis em séries temporaisKonzen, Evandro January 2014 (has links)
Este trabalho aplica algumas formas de penalização tipo LASSO aos coeficientes para reduzir a dimensionalidade do espaço paramétrico em séries temporais, no intuito de melhorar as previsões fora da amostra. Particularmente, o método denominado aqui como WLadaLASSO atribui diferentes pesos para cada coeficiente e para cada defasagem. Nas implementações de Monte Carlo deste trabalho, quando comparado a outros métodos de encolhimento do conjunto de coeficientes, essencialmente nos casos de pequenas amostras, o WLadaLASSO mostra superioridade na seleção das covariáveis, na estimação dos parâmetros e nas previsões. Uma aplicação a séries macroeconômicas brasileiras também mostra que tal abordagem apresenta a melhor performance de previsão do PIB brasileiro comparada a outras abordagens. / This dissertation applies some forms of LASSO-type penalty on the coefficients to reduce the dimensionality of the parameter space in time series, in order to improve the out-of-sample forecasting. Particularly, the method named here as WLadaLASSO assigns different weights to each coefficient and lag period. In Monte Carlo implementations in this study, when compared to other shrinkage methods, essentially for small samples, the WLadaLASSO shows superiority in the covariable selection, in the parameter estimation and in forecasting. An application to Brazilian macroeconomic series also shows that this approach has the best forecasting performance of the Brazilian GDP compared to other approaches.
|
25 |
Previsão de tempos de reposição de serviço em rede eléctricas de MTLopes, Tiago Costa January 2012 (has links)
Projecto realizado na EDP e coorientado pelo Engenheiro Pedro Terras Marques / Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Energia. Faculdade de Engenharia. Universidade do Porto. 2012
|
26 |
Os modelos VAR e VEC espaciais : uma abordagem bayesianaHauer, Mariana January 2007 (has links)
O objetivo deste trabalho é apresentar o Modelo Vetorial Autorregressivo (VAR) e uma das suas variações, o Modelo Vetorial de Correções de Erros (VEC), segundo uma abordagem Bayesiana, considerando componentes regionais, que serão inseridos nos modelos apresentados através de informações a priori que levam em consideração a localização dos dados. Para formar tais informações a priori são utilizados conceitos referentes à econometria espacial, como por exemplo, as relações de contigüidade e as implicações que estas trazem. Como exemplo ilustrativo, o modelo em questão será aplicado a um conjunto de dados regionais, coletados por estados brasileiros. Este conjunto de dados consiste em observações da variável produção industrial para oito estados, no período de janeiro de 1991 a setembro de 2006. Em função da escolha do modelo adequado, a questão central foi descobrir em que medida a incorporação destas informações a priori no modelo VEC Bayesiano é coerente quando estimamos modelos que consideram informações localizacionais. / The main goal of this work is to present the Vector Autoregressive Model (VAR) and one of its variations, the Vector Error Correction Model (VEC), according to a Bayesian variant, considering regional components that will be inserted in the models presented through prior information, which takes in consideration the data localization. To form such prior information, spatial econometrics is used, as for example the contiguity relations and the implications that these bring to the modeling. As illustrative example, the model in question will be applied to a regional data set, collected for Brazilian states. This data set consists of industrial production for eight states, in the period between January 1991 and September 2006. The central question is to uncover whether the incorporation of these prior informations in the Bayesian VEC Model is coherent when we use models that consider contiguity information.
|
27 |
Modelagem e previsão de volatilidade para o setor siderúrgico brasileiro : volatilidade estocástica versus determinísticaRibeiro, Bruno Passos Spínola January 2009 (has links)
A busca da correta modelagem e previsão de volatilidade em séries financeiras é o que motiva grande parte dos analistas e gestores de carteiras. Esta dissertação buscou, portanto comparar dois tipos de modelos de volatilidade - determinística e estocástica - para as três principais séries de retornos de ações do setor siderúrgico brasileiro, quais sejam: Gerdau PN (GGBR4), Usiminas PN (USIM5) e CSN ON (CSNA3). Os três ativos apresentaram estruturas semelhantes para suas volatilidades. Para as três séries foram encontradas especificações determinísticas do tipo AR (1) - EGARCH (1,1) e AR (1) - TGARCH (0,1), ambas com volatilidades estimadas muito próximas. No caso estocástico optou-se por um modelo AR (1) - SV Estacionário para as três séries de retornos. A maior persistência foi observada no ativo da Gerdau, mostrando que um choque sobre o ativo da Gerdau demora mais a se dissipar do que um choque de mesma magnitude sobre os ativos de Usiminas e CSN. Quanto ao efeito alavancagem, a ação da Usiminas apresentou o maior resultado estimado, mostrando que retornos negativos em um dado instante t geram maior volatilidade no período seguinte (t+1) sobre o ativo da Usiminas. Por último comparou-se a qualidade preditiva das duas classes de modelos de volatilidade por meio de previsões um passo à frente durante 21 dias utilizando-se três estatísticas de previsão - erro médio (ME), raiz do erro quadrático médio (RMSE) e erro absoluto médio (MAE). Para o ativo USIM5 as três estatísticas sugerem que o modelo escolhido deve ser o estocástico. Para o ativo GGBR4 e CSNA3 o ME sugere que o modelo escolhido deve ser o determinístico e o RMSE e o MAE sugerem que o modelo escolhido deve ser o estocástico. / The accurate modeling and forecasting of volatility in financial series is what motivates most analysts and portfolio managers. This dissertation sought therefore to compare two types of volatility models - deterministic and stochastic - for three major series of stock returns of the Brazilian steel industry, namely: Gerdau PN (GGBR4), Usiminas PN (USIM5) and CSN ON (CSNA3). The three assets had similar structures to their volatilities. For all the series we found deterministic specifications of the type AR (1) - EGARCH (1,1) and AR (1) - TGARCH (0.1), both with very close volatility estimates. In the stochastic case we chose a model AR (1) - SV Stationary for the three sets of returns. The highest persistence was observed in the asset of Gerdau, showing that a shock on this asset takes longer to dissipate than a clash of the same magnitude on the assets of Usiminas and CSN. For the leverage effect, the series of Usiminas had the highest estimated results, showing that negative returns in a given time t generate greater volatility in period (t +1) on the asset of Usiminas. Finally we compared the predictive quality of the two classes of volatility models through a one step ahead forecast for 21 days using three statistics for forecasting - mean error (ME), mean squared error (RMSEA) and mean absolute error (MAE). For the asset USIM5 the three statistics suggest that the chosen model should be the stochastic. For the assets GGBR4 and CSNA3 the ME suggests that the chosen model should be the deterministic and the RMSE and MAE suggest that the chosen model should be the stochastic.
|
28 |
Modelo de Previsão de Preços de Frente MarítimoPenedo, Theo 18 November 2008 (has links)
Submitted by Vitor Souza (vitor.souza@fgv.br) on 2008-11-17T16:41:04Z
No. of bitstreams: 1
Tese Theo V21.pdf: 556601 bytes, checksum: a9fbfbc22f9fc892ca538fe11c2b1ece (MD5) / Approved for entry into archive by Antoanne Pontes(antoanne.pontes@fgv.br) on 2008-11-18T11:46:22Z (GMT) No. of bitstreams: 1
Tese Theo V21.pdf: 556601 bytes, checksum: a9fbfbc22f9fc892ca538fe11c2b1ece (MD5) / Made available in DSpace on 2008-11-18T11:46:22Z (GMT). No. of bitstreams: 1
Tese Theo V21.pdf: 556601 bytes, checksum: a9fbfbc22f9fc892ca538fe11c2b1ece (MD5) / O frete marítimo tem sido um componente cada vez mais relevante na economia mundial, provocando alterações no comércio internacional, principalmente no transporte de longa distância. O presente estudo tem como objetivo analisar o comportamento do mercado de frete de cargas a granel de grandes navios através de um modelo de previsão de preços para o período 2008-2012. Os resultados sugerem uma forte redução dos preços nos próximos anos, influenciada pelo vigoroso crescimento na produção de novos navios na China.
|
29 |
Previsão da estrutura a termo da taxa de juros brasileira usando redes neurais artificiaisArantes, Breno de Oliveira January 2013 (has links)
Avaliamos as previsões fora da amostra da curva de juros geradas por modelos de redes neurais artificiais e as comparamos com os modelos tradicionalmente usados para este fim. A curva de juros foi segmentada em três regiões distintas e para cada uma dessas regiões e horizontes de previsão, foram estimados duas classes de modelos de redes neurais (modelos dinâmicos e modelos estáticos), totalizando 198 modelos estimados. Afim de verificar a significância estatística das previsões dos modelos de RNA em relação aos outros modelos, foi realizado o teste Diebold-Mariano. Os resultados mostram que em média, os modelos estimados através de RNA conseguiram superar as previsões realizadas pelo random walk em todos os horizontes de previsão, sendo essas previsões em torno de 2% e 5% melhores para os horizontes de 1 dia e 1 semana a frente, e de 12% e 7% melhores para os horizontes mais longos, de 1 mês e 3 meses. Além disso, apresentou previsões em torno de 15% e 10% melhores que o modelo de NS para os horizontes de 1 mês e 3 meses a frente. Concluimos que os modelos de redes neurais são capazes de realizar previsões superiores para todos os horizontes testados, principalmente para região de curto prazo da curva, com destaque especial para as previsões com horizontes de 1 dia e 1 semana a frente. / We evaluate the out of sample forecasts of the yield curve generated by artificial neural network models and compare them with the models traditionally used for this purpose. The yield curve was segmented into three distinct regions and for each region and forecast horizons, we estimated two classes of neural network models (dynamic models and static models), totaling 198 models estimated. In order to check the statistical significance of the model predictions of RNA compared to other models, was performed the Diebold-Mariano’s test. The results show that on average, the models estimated using RNA overcame the predictions made by the random walk at all forecast horizons, and these forecasts around 2% and 5% better for horizons of 1 day and 1 week forward and 12% and 7% better for longer horizons, 1 month and 3 months. Moreover, forecasts showed around 15% and 10% better than the NS model for horizons of 1 month and 3 months ahead. We conclude that the neural network models are capable of superior forecasts for all horizons tested, especially for short-term region of the curve, with particular attention to the forecasts with horizons of 1 day and 1 week ahead.
|
30 |
Os modelos VAR e VEC espaciais : uma abordagem bayesianaHauer, Mariana January 2007 (has links)
O objetivo deste trabalho é apresentar o Modelo Vetorial Autorregressivo (VAR) e uma das suas variações, o Modelo Vetorial de Correções de Erros (VEC), segundo uma abordagem Bayesiana, considerando componentes regionais, que serão inseridos nos modelos apresentados através de informações a priori que levam em consideração a localização dos dados. Para formar tais informações a priori são utilizados conceitos referentes à econometria espacial, como por exemplo, as relações de contigüidade e as implicações que estas trazem. Como exemplo ilustrativo, o modelo em questão será aplicado a um conjunto de dados regionais, coletados por estados brasileiros. Este conjunto de dados consiste em observações da variável produção industrial para oito estados, no período de janeiro de 1991 a setembro de 2006. Em função da escolha do modelo adequado, a questão central foi descobrir em que medida a incorporação destas informações a priori no modelo VEC Bayesiano é coerente quando estimamos modelos que consideram informações localizacionais. / The main goal of this work is to present the Vector Autoregressive Model (VAR) and one of its variations, the Vector Error Correction Model (VEC), according to a Bayesian variant, considering regional components that will be inserted in the models presented through prior information, which takes in consideration the data localization. To form such prior information, spatial econometrics is used, as for example the contiguity relations and the implications that these bring to the modeling. As illustrative example, the model in question will be applied to a regional data set, collected for Brazilian states. This data set consists of industrial production for eight states, in the period between January 1991 and September 2006. The central question is to uncover whether the incorporation of these prior informations in the Bayesian VEC Model is coherent when we use models that consider contiguity information.
|
Page generated in 0.0961 seconds