Spelling suggestions: "subject:"amodular arithmetic."" "subject:"bmodular arithmetic.""
21 |
[pt] CRIPTOGRAFIA NA EDUCAÇÃO BÁSICA: DAS ESCRITAS OCULTAS AO CÓDIGO RSA / [en] ENCRYPTION IN BASIC EDUCATION: FROM THE HIDDEN CODE WRITTEN TO RSAIGOR NASCIMENTO DA SILVA 06 October 2016 (has links)
[pt] Essa dissertação se propõe a introduzir nas aulas de matemática da escola
básica um tema que traga significado e interesse ao alunado e que, a partir dele,
seja possível desenvolver conteúdos novos e clássicos da disciplina, pertinentes
a esse nível de escolaridade. O tema escolhido foi a criptografia que possibilitou
o desenvolvimento de uma abordagem histórica da sua evolução até o código
RSA, a promoção de discussões sobre a relevância atual do assunto até os nossos
dias e o trabalho com conteúdos importantes da matemática. Com o intuito de
aprimorar e avaliar a proposta, uma pequena aplicação numa escola pública foi
feita, através de uma oficina, com resultados bastante satisfatórios. Pretende-se
que este trabalho seja mais uma fonte para auxiliar diversos professores na
construção de novas propostas pedagógicas adaptadas à realidade de cada sala de
aula com olhar motivador, significativo e contemporâneo. / [en] This dissertation proposes to introduce in the math class of the elementary
school a theme that brings meaning and interest to the students and, from it, it is
possible to develop new and classic content, relevant discipline at this level of
education. The theme chosen was the encryption that made possible the
development of a historical approach of its development until the RSA code, the
promotion of discussions on the current relevance of the subject until our days
and working with important content of mathematics. In order to improve and
evaluate the proposal, a small application in a public school was made, through a
workshop, with results quite satisfactory. It is intended that this work is more a
source to assist several teachers in the construction of new pedagogical
proposals adapted to the reality of each classroom with motivating, meaningful
and contemporary look.
|
22 |
Performance Optimization of Public Key Cryptography on Embedded PlatformsPabbuleti, Krishna Chaitanya 23 May 2014 (has links)
Embedded systems are so ubiquitous that they account for almost 90% of all the computing devices. They range from very small scale devices with an 8-bit microcontroller and few kilobytes of RAM to large-scale devices featuring PC-like performance with full-blown 32-bit or 64-bit processors, special-purpose acceleration hardware and several gigabytes of RAM. Each of these classes of embedded systems have unique set of challenges in terms of hardware utilization, performance and power consumption. As network connectivity becomes a standard feature in these devices, security becomes an important concern. Public Key Cryptography is an indispensable tool to implement various security features necessary on these embedded platforms. In this thesis, we provide optimized PKC solutions on platforms belonging to two extreme classes of the embedded system spectrum.
First, we target high-end embedded platforms Qualcomm Snapdragon and Intel Atom. Each of these platforms features a dual-core processor, a GPU and a gigabyte of RAM. We use the SIMD coprocessor built into these processors to accelerate the modular arithmetic which accounts for the majority of execution time in Elliptic Curve Cryptography. We exploit the structure of NIST primes to perform the reduction step as we perform the multiplication. Our implementation runs over two times faster than OpenSSL implementations on the respective platforms.
The second platform we targeted is an energy-harvested wireless sensor node which has a 16-bit MSP430 microcontroller and a low power RF interface. The system derives its power from a solar panel and is constrained in terms of available energy and computational power. We analyze the computation and communication energy requirements for different signature schemes, each with a different trade-off between computation and communication. We investigate the Elliptic Curve Digital Signature Algorithm (ECDSA), the Lamport-Diffie one-time hash-based signature scheme (LD-OTS) and the Winternitz one-time hash-based signature scheme (W-OTS). We demonstrate that there’s a trade-off between energy needs, security level and algorithm selection. However, when we consider the energy needs for the overall system, we show that all schemes are within one order of magnitude from each another. / Master of Science
|
23 |
Adaptive balancing of direct conversion wireless receivers using finite arithmeticNathani, Nikunj Madhu 01 October 2002 (has links)
No description available.
|
24 |
Números primos e criptografia RSA / Prime number and RSA cryptographyOkumura, Mirella Kiyo 22 January 2014 (has links)
Estudamos a criptografia RSA como uma importante aplicação dos números primos e da aritmética modular. Apresentamos algumas sugestões de atividades relacionadas ao tema a serem desenvolvidas em sala de aula nas séries finais do ensino fundamental / We studied RSA cryptography as an important application to prime numbers and modular arithmetic. We present some suggestions of activities related to the subject to be developed in classrooms of the final years of elementary school vii
|
25 |
Números primos e criptografia RSA / Prime number and RSA cryptographyMirella Kiyo Okumura 22 January 2014 (has links)
Estudamos a criptografia RSA como uma importante aplicação dos números primos e da aritmética modular. Apresentamos algumas sugestões de atividades relacionadas ao tema a serem desenvolvidas em sala de aula nas séries finais do ensino fundamental / We studied RSA cryptography as an important application to prime numbers and modular arithmetic. We present some suggestions of activities related to the subject to be developed in classrooms of the final years of elementary school vii
|
26 |
On Efficient Polynomial Multiplication and Its Impact on Curve based CryptosystemsAlrefai, Ahmad Salam 05 December 2013 (has links)
Secure communication is critical to many applications. To this end, various security goals can be achieved using elliptic/hyperelliptic curve and pairing based cryptography. Polynomial multiplication is used in the underlying operations of these protocols. Therefore, as part of this thesis different recursive algorithms are studied; these algorithms include Karatsuba, Toom, and Bernstein. In this thesis, we investigate algorithms and implementation techniques to improve the performance of the cryptographic protocols. Common factors present in explicit formulae in elliptic curves operations are utilized such that two multiplications are replaced by a single multiplication in a higher field. Moreover, we utilize the idea based on common factor used in elliptic curves and generate new explicit formulae for hyperelliptic curves and pairing. In the case of hyperelliptic curves, the common factor method is applied to the fastest known even characteristic hyperelliptic curve operations, i.e. divisor addition and divisor doubling. Similarly, in pairing we observe the presence of common factors inside the Miller loop of Eta pairing and the theoretical results show significant improvement when applying the idea based on common factor method. This has a great advantage for applications that require higher speed.
|
27 |
Étude théorique et implantation matérielle d'unités de calcul en représentation modulaire des nombres pour la cryptographie sur courbes elliptiques / Theoretical study and hardware implementation of arithmetical units in Residue Number System (RNS) for Elliptic Curve Cryptography (ECC)Bigou, Karim 03 November 2014 (has links)
Ces travaux de thèse portent sur l'accélération de calculs de la cryptographie sur courbes elliptiques (ECC) grâce à une représentation peu habituelle des nombres, appelée représentation modulaire des nombres (ou RNS pour residue number system). Après un état de l'art de l'utilisation du RNS en cryptographie, plusieurs nouveaux algorithmes RNS, plus rapides que ceux de l'état de l'art, sont présentés. Premièrement, nous avons proposé un nouvel algorithme d'inversion modulaire en RNS. Les performances de notre algorithme ont été validées via une implantation FPGA, résultant en une inversion modulaire 5 à 12 fois plus rapide que l'état de l'art, pour les paramètres cryptographiques testés. Deuxièmement, un algorithme de multiplication modulaire RNS a été proposé. Cet algorithme décompose les valeurs en entrée et les calculs, afin de pouvoir réutiliser certaines parties lorsque c'est possible, par exemple lors du calcul d'un carré. Il permet de réduire de près de 25 % le nombre de pré-calculs à stocker et jusqu'à 10 % le nombre de multiplications élémentaires pour certaines applications cryptographiques (p. ex. le logarithme discret). Un algorithme d'exponentiation reprenant les mêmes idées est aussi présenté, réduisant le nombre de multiplications élémentaires de 15 à 22 %, contre un surcoût en pré-calculs à stocker. Troisièmement, un autre algorithme de multiplication modulaire RNS est proposé, ne nécessitant qu'une seule base RNS au lieu de 2 pour l'état de l'art, et utilisable uniquement dans le cadre ECC. Cet algorithme permet, pour certains corps bien spécifiques, de diviser par 2 le nombre de multiplications élémentaires et par 4 les pré-calculs à stocker. Les premiers résultats FPGA donnent des implantations de notre algorithme jusqu'à 2 fois plus petites que celles de l'algorithme de l'état de l'art, pour un surcoût en temps d'au plus 10 %. Finalement, une méthode permettant des tests de divisibilités multiples rapides est proposée, pouvant être utilisée en matériel pour un recodage de scalaire, accélérant certains calculs pour ECC. / The main objective of this PhD thesis is to speedup elliptic curve cryptography (ECC) computations, using the residue number system (RNS). A state-of-art of RNS for cryptographic computations is presented. Then, several new RNS algorithms, faster than state-of-art ones, are proposed. First, a new RNS modular inversion algorithm is presented. This algorithm leads to implementations from 5 to 12 times faster than state-of-art ones, for the standard cryptographic parameters evaluated. Second, a new algorithm for RNS modular multiplication is proposed. In this algorithm, computations are split into independant parts, which can be reused in some computations when operands are reused, for instance to perform a square. It reduces the number of precomputations by 25 % and the number of elementary multiplications up to 10 %, for some cryptographic applications (for example with the discrete logarithm). Using the same idea, an exponentiation algorithm is also proposed. It reduces from 15 % to 22 % the number of elementary multiplications, but requires more precomputations than state-of-art. Third, another modular multiplication algorithm is presented, requiring only one RNS base, instead of 2 for the state-of-art. This algorithm can be used for ECC and well-chosen fields, it divides by 2 the number of elementary multiplications, and by 4 the number of precomputations to store. Partial FPGA implementations of our algorithm halves the area, for a computation time overhead of, at worse, 10 %, compared to state-of-art algorithms. Finally, a method for fast multiple divisibility tests is presented, which can be used in hardware for scalar recoding to accelerate some ECC computations.
|
28 |
Opérateurs arithmétiques parallèles pour la cryptographie asymétrique / Parallel arithmetical operators for asymmetric cryptographyIzard, Thomas 19 December 2011 (has links)
Les protocoles de cryptographie asymétrique nécessitent des calculs arithmétiques dans différentes structures mathématiques de grandes tailles. Pour garantir une sécurité suffisante, ces tailles varient de plusieurs centaines à plusieurs milliers de bits et rendent les opérations arithmétiques coûteuses en temps de calcul. D'autre part, les architectures grand public actuelles embarquent plusieurs unités de calcul, réparties sur les processeurs et éventuellement sur les cartes graphiques. Ces ressources sont aujourd'hui facilement exploitables grâce à des interfaces de programmation parallèle comme OpenMP ou CUDA. Dans cette thèse, nous étudions la parallélisation d'opérateurs à différents niveaux arithmétique. Nous nous intéressons plus particulièrement à la multiplication entre entiers multiprécision ; à la multiplication modulaire ; et enfin à la multiplication scalaire sur les courbes elliptiques.Dans chacun des cas, nous étudions différents ordonnancements des calculs permettant d'obtenir les meilleures performances. Nous proposons également une bibliothèque permettant la parallélisation sur processeur graphique d'instances d'opérations modulaires et d'opérations sur les courbes elliptiques. Enfin, nous proposons une méthode d'optimisation automatique de la multiplication scalaire sur les courbes elliptiques pour de petits scalaires permettant l'élimination des sous-expressions communes apparaissant dans la formule et l'application systématique de transformations arithmétiques. / Asymmetric cryptography requires some computations in large size finite mathematical structures. To insure the required security, these sizes range from several hundred to several thousand of bits. Mathematical operations are thus expansive in terms of computation time. Otherwise, current architectures have several computing units, which are distribued over the processors and GPU and easily implementable using dedicated languages as OpenMP or CUDA. In this dissertation, we investigate the parallelization of some operators for different arithmetical levels.In particular, our research focuse on parallel multiprecision and modular multiplications, and the parallelization of scalar multiplication over elliptic curves. We also propose a library to parallelize modular operations and elliptic curves operations. Finally, we present a method which allow to optimize scalar elliptic curve multiplication for small scalars.
|
29 |
Aritmética modular, códigos elementares e criptografiaBarreto, Regene Chaves Pimentel Pereira 29 August 2014 (has links)
The main objective of this work is to treat the modular arithmetic of whole
numbers, and show evidence of some types of elementary code such as Cesar's, A m,
of Vigenere's, Hill's, RSA, Rabin's, MH and ElGamal, those found in cryptography,
highlighting the mathematics which exists behind the function of each of them. We
have studied the concepts of modular arithmetic and applied them to the study of
matrices and determinants that are necessary for the function of these codes and for
the evolution of cryptography. We also present some codes found in our day-to-day
life, aiming to stimulate the curiosity of the reader into discovering these codes.
Finally, for complementary information purposes, we reveal a brief collected history
of cryptography. / O presente trabalho tem como principal objetivo tratar de aritmética modular
dos inteiros e evidenciar alguns tipos de códigos elementares, a exemplo dos Códigos
de César, Afim, de Vigenère, de Hill, RSA, de Rabin, MH e ElGamal, existentes
na criptografia, ressaltando a matemática que existe por trás do funcionamento
de cada um deles. Estudamos conceitos de aritmética modular e os aplicamos ao
estudo de matrizes e determinantes que se fazem necessários para o funcionamento
desses códigos e para a evolução da criptografia. Apresentamos ainda alguns códigos
encontrados no nosso dia a dia, buscando estimular a curiosidade do leitor pelo
conhecimento dos códigos. Por fim, a título de informação complementar, expomos
um breve apanhado histórico da criptografia.
|
30 |
Využití systému zbytkových tříd pro zpracování digitálních signálů / Residue Number System Based Building Blocks for Applications in Digital Signal ProcessingYounes, Dina January 2013 (has links)
Předkládaná disertační práce se zabývá návrhem základních bloků v systému zbytkových tříd pro zvýšení výkonu aplikací určených pro digitální zpracování signálů (DSP). Systém zbytkových tříd (RNS) je neváhová číselná soustava, jež umožňuje provádět paralelizovatelné, vysokorychlostní, bezpečné a proti chybám odolné aritmetické operace, které jsou zpracovávány bez přenosu mezi řády. Tyto vlastnosti jej činí značně perspektivním pro použití v DSP aplikacích náročných na výpočetní výkon a odolných proti chybám. Typický RNS systém se skládá ze tří hlavních částí: převodníku z binárního kódu do RNS, který počítá ekvivalent vstupních binárních hodnot v systému zbytkových tříd, dále jsou to paralelně řazené RNS aritmetické jednotky, které provádějí aritmetické operace s operandy již převedenými do RNS. Poslední část pak tvoří převodník z RNS do binárního kódu, který převádí výsledek zpět do výchozího binárního kódu. Hlavním cílem této disertační práce bylo navrhnout nové struktury základních bloků výše zmiňovaného systému zbytkových tříd, které mohou být využity v aplikacích DSP. Tato disertační práce předkládá zlepšení a návrhy nových struktur komponent RNS, simulaci a také ověření jejich funkčnosti prostřednictvím implementace v obvodech FPGA. Kromě návrhů nové struktury základních komponentů RNS je prezentován také podrobný výzkum různých sad modulů, který je srovnává a determinuje nejefektivnější sadu pro různé dynamické rozsahy. Dalším z klíčových přínosů disertační práce je objevení a ověření podmínky určující výběr optimální sady modulů, která umožňuje zvýšit výkonnost aplikací DSP. Dále byla navržena aplikace pro zpracování obrazu využívající RNS, která má vůči klasické binární implementanci nižší spotřebu a vyšší maximální pracovní frekvenci. V závěru práce byla vyhodnocena hlavní kritéria při rozhodování, zda je vhodnější pro danou aplikaci využít binární číselnou soustavu nebo RNS.
|
Page generated in 0.0632 seconds