• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charge transport in molecular junctions and microfluidic devices

Olson, Steven 11 1900 (has links)
Electro-transmittance of molecular junctions was characterized electrically and studied optically at 410nm and 532nm. Between 1kHz and 100kHz there was no qualitative difference between the control samples and the molecular junction samples, however there were difficulties with reproducibility of the quantitative behaviour, so no hard conclusions could be drawn. A microfluidic capacitor device was designed and fabricated to study the electrical double layer, using standard microfabrication techniques. A complimentary flux corrected transport simulation was written using the same experimental geometry and the results of this study found qualitative agreement between the simulation and experiment. The experiment produced results about the concentration dependence of the double layer formation time which allows an estimate of the required frequency of an AC electrical signal for which the electrical double layer doesnt have time to form, and its effects can be ignored.
2

Charge transport in molecular junctions and microfluidic devices

Olson, Steven Unknown Date
No description available.
3

An ab-initio analysis of bimetallic oligoaniline molecular junctions

Wang, Michael Wei-Lueng 17 September 2007 (has links)
The electron transport characteristics of Oligoaniline molecular junctions terminated with thiol-ends are analyzed with the density functional theory and the Green's function approach. The molecular junction consists of an Oligoaniline molecule attached to metal electrodes at each end. By applying an electric field, the molecule conducts a current that depends on either the molecular conformation or the ionization state. Ab initio optimization methods are performed on various Oligoaniline systems to analyze how different conformational changes are associated with different conductivities. The density functional theory and Green's function are used to calculate the density of states, transmission probability functions, and current-voltage calculations for each Oligoaniline system to complement the results from the molecular analysis. An inelastic tunneling spectrum analysis is also performed through frequency calculations to examine the different characteristics of each conducting state. Molecular orbits of each conformation was used to investigate further the relation between structure and electrical properties of the molecular junction. The combined results from the different calculations provided insight into the possible mechanisms for electron transfer throughout the junction.
4

Fabrication and electrical characterization of carbon-based molecular electronic junctions

Anariba, Franklin E. 10 March 2005 (has links)
No description available.
5

Junções moleculares e agregados de nanobastões de ouro: um estudo SERS / Molecular junctions and gold nanorods aggregates: SERS study

Souza, Klester dos Santos 26 February 2016 (has links)
A Espectroscopia Raman Intensificada pela Superfície (SERS) é um efeito de intensificação da intensidade Raman de uma molécula adsorvida numa superfície metálica nanoestruturada. Esta característica permite a utilização do SERS na caracterização vibracional de sistemas como junções moleculares (JM) (JM são sistemas constituídos de fios moleculares sintetizados em junções do tipo metal|fiomolecular|metal) e, no entendimento de quais características morfológicas de agregados metálicos mais influenciariam no sinal SERS obtido. Portanto, esta tese apresenta os seguintes objetivos: (a) síntese e caracterização de substratos SERS ativos, nanoesferas (AuNE) e nanobastões (AuNB) de ouro e eletrodo de ouro ativado eletroquimicamente; (b) síntese e caracterização SERS de fios moleculares em JM; (c) estudo do acoplamento plasmônico entre as superfícies metálicas em JM; (d) correlação entre SERS - morfologia de agregados individuais de AuNB. Os fios moleculares estudados foram os da família das oligofeniliminas (OPI) e, no melhor do nosso entendimento, esta foi a primeira vez que fios moleculares desta família foram caracterizados por Raman e SERS. As JM apresentaram um comportamento SERS não esperado. Enquanto para o modo vibracional, v(CS), a intensidade da banda se apresentou constante com o aumento do espaçamento entre as nanoestruturas metálicas (para distâncias de até 5 nm), o modo vibracional, β(CH), teve a intensidade de sua banda aumentada. Este comportamento foi explicado considerando a diferente natureza da interação dos plasmons nas JM, sendo estas interações do tipo, ressonância de plasmon de superfície (LSPR) - dipolo imagem, para ambos os modos. No entanto, para o modo β(CH) existe também uma intensificação extra devido ao aumento da polarizabilidade dos fios moleculares com o aumento do número de unidades. A correlação SERS - morfologia dos agregados de AuNB indicam que, para agregados onde predominam interações ponta a ponta, os espectros SERS apresentavam uma maior intensidade quando comparados com aqueles em que interações lado a lado predominavam. No entanto, este comportamento não foi observado para agregados contendo mais do que cinco nanopartículas onde estes dois tipos de interações ocorrem indicando que deve existir um acoplamento dos plasmons destes dois tipos de interações contribuindo para maiores valores de intensidade SERS. / Surface enhanced Raman Spectroscopy (SERS) is a Raman enhancing effect of molecules adsorbed on nanostructured metal surfaces. This characteristic allows the use of SERS in the vibrational study of Molecular Junction systems (MJ) (MJ is a system formed by Molecular Wires (pi-conjugated molecules) synthesized in metal junctions like metal|molecular-wire|metal). In addition, we can also use SERS to understand the influence of morphological characteristic of gold nanostructures. This thesis aims: (a) synthesis and characterization of gold nanospheres (AuNS), nanorods (AuNR) and gold electrode (electrochemically activated); (b) synthesis and vibrational studies of molecular wires in JM; (c) plasmon coupling studies between flat surface and gold nanorods; (d) correlation SERS - AuNR morphology of individual aggregates. For the best of our knowledge, this was the first time that oligophenilenelimine (OPI) as molecular wire was characterized by Raman and SERS. The MJ showed an unusual behavior such that the v(CS) vibrational mode remained constant in intensity with the increasing of the gap spacing (within 5 nm) while the β(CH) increased with the increase of the gap. This behaviour was related to the different nature of the interaction between plasmons resonances in JM (surface plasmon resonance (LSPR) - dipole image) for the first case and due to chemical contributions by the molecular wires for the second vibrational mode. The results for SERS - morphology AuNR aggregates correlation showed (for small aggregates) that when in the aggregate predominated end-by-end interaction SERS spectra showed a higher intensity when compared to those in which interactions side-by-side predominated. Although, this behavior was not observed for aggregates containing more than five nanoparticles indicating that there is not a preferential interaction between the nanorods for such aggregates and that a mixture of both will be preferable for large SERS intensities.
6

Junções moleculares e agregados de nanobastões de ouro: um estudo SERS / Molecular junctions and gold nanorods aggregates: SERS study

Klester dos Santos Souza 26 February 2016 (has links)
A Espectroscopia Raman Intensificada pela Superfície (SERS) é um efeito de intensificação da intensidade Raman de uma molécula adsorvida numa superfície metálica nanoestruturada. Esta característica permite a utilização do SERS na caracterização vibracional de sistemas como junções moleculares (JM) (JM são sistemas constituídos de fios moleculares sintetizados em junções do tipo metal|fiomolecular|metal) e, no entendimento de quais características morfológicas de agregados metálicos mais influenciariam no sinal SERS obtido. Portanto, esta tese apresenta os seguintes objetivos: (a) síntese e caracterização de substratos SERS ativos, nanoesferas (AuNE) e nanobastões (AuNB) de ouro e eletrodo de ouro ativado eletroquimicamente; (b) síntese e caracterização SERS de fios moleculares em JM; (c) estudo do acoplamento plasmônico entre as superfícies metálicas em JM; (d) correlação entre SERS - morfologia de agregados individuais de AuNB. Os fios moleculares estudados foram os da família das oligofeniliminas (OPI) e, no melhor do nosso entendimento, esta foi a primeira vez que fios moleculares desta família foram caracterizados por Raman e SERS. As JM apresentaram um comportamento SERS não esperado. Enquanto para o modo vibracional, v(CS), a intensidade da banda se apresentou constante com o aumento do espaçamento entre as nanoestruturas metálicas (para distâncias de até 5 nm), o modo vibracional, β(CH), teve a intensidade de sua banda aumentada. Este comportamento foi explicado considerando a diferente natureza da interação dos plasmons nas JM, sendo estas interações do tipo, ressonância de plasmon de superfície (LSPR) - dipolo imagem, para ambos os modos. No entanto, para o modo β(CH) existe também uma intensificação extra devido ao aumento da polarizabilidade dos fios moleculares com o aumento do número de unidades. A correlação SERS - morfologia dos agregados de AuNB indicam que, para agregados onde predominam interações ponta a ponta, os espectros SERS apresentavam uma maior intensidade quando comparados com aqueles em que interações lado a lado predominavam. No entanto, este comportamento não foi observado para agregados contendo mais do que cinco nanopartículas onde estes dois tipos de interações ocorrem indicando que deve existir um acoplamento dos plasmons destes dois tipos de interações contribuindo para maiores valores de intensidade SERS. / Surface enhanced Raman Spectroscopy (SERS) is a Raman enhancing effect of molecules adsorbed on nanostructured metal surfaces. This characteristic allows the use of SERS in the vibrational study of Molecular Junction systems (MJ) (MJ is a system formed by Molecular Wires (pi-conjugated molecules) synthesized in metal junctions like metal|molecular-wire|metal). In addition, we can also use SERS to understand the influence of morphological characteristic of gold nanostructures. This thesis aims: (a) synthesis and characterization of gold nanospheres (AuNS), nanorods (AuNR) and gold electrode (electrochemically activated); (b) synthesis and vibrational studies of molecular wires in JM; (c) plasmon coupling studies between flat surface and gold nanorods; (d) correlation SERS - AuNR morphology of individual aggregates. For the best of our knowledge, this was the first time that oligophenilenelimine (OPI) as molecular wire was characterized by Raman and SERS. The MJ showed an unusual behavior such that the v(CS) vibrational mode remained constant in intensity with the increasing of the gap spacing (within 5 nm) while the β(CH) increased with the increase of the gap. This behaviour was related to the different nature of the interaction between plasmons resonances in JM (surface plasmon resonance (LSPR) - dipole image) for the first case and due to chemical contributions by the molecular wires for the second vibrational mode. The results for SERS - morphology AuNR aggregates correlation showed (for small aggregates) that when in the aggregate predominated end-by-end interaction SERS spectra showed a higher intensity when compared to those in which interactions side-by-side predominated. Although, this behavior was not observed for aggregates containing more than five nanoparticles indicating that there is not a preferential interaction between the nanorods for such aggregates and that a mixture of both will be preferable for large SERS intensities.
7

Approach to control, protect and switch charge transport through molecular junctions and atomic contact / Approche pour contrôler, protéger ou commuter le transport électronique dans des jonctions moléculaires et contacts atomiques

Ai, Yong 11 October 2016 (has links)
Ces dernières décennies, l'électronique moléculaire a suscité un intérêt croissant. La construction de jonctions métal / molécules / métal est une étape fondamentale dans la compréhension de ce domaine. Nous avons été témoins d’avancées importantes concernant les jonctions moléculaires tant sur le plan théorique que sur le plan expérimental. Cette thèse se concentre principalement sur l'étude du transport de charge à travers les jonctions moléculaires. Des polymères conducteurs et des filaments de cuivre ont été déposés, par électrochimie avec un microscope électrochimique à balayage (SECM), entre une pointe et une électrode substrat. Ainsi, nous avons développé une nouvelle façon de réaliser des contacts atomiques et des jonctions moléculaires permettant de contrôler, d’activer et de protéger ces systèmes.La fabrication de jonctions à grille redox de polymères conducteurs, tel que le PEDOT et le PBT, a été effectuée dans l’intervalle micrométrique séparant les deux électrodes du SECM. Ces nano-jonctions, hautement stables et réversibles, ont montré des conductances de 10-7-10-8 S dans leur état conducteur. Ces résultats, liés à la croissance du polymère, donnent à penser que la conductance de l'ensemble de la jonction est régie par 20 à 100 oligomères.Afin d’obtenir des nano-jonctions de manière contrôlée, une méthode combinant la stratégie dite « Break Junction » (BJ) et le SECM a été mise en place. Une nano-jonction peut être obtenue en éloignant la pointe de sa position initiale. Les variations de conductance obtenues ont montré que des jonctions moléculaires au PEDOT peuvent être brisées par paliers. Des paliers de conductance ont été mesurés par SECM-BJ, et sont comparables à ceux observés par des approches STM-BJ classiques. La technique SECM-BJ s’est avérée efficace pour la fabrication et l’étude de jonctions moléculaires de polymères à grille redox. Le SECM permet également de réaliser des nano-jonctions en utilisant une stratégie d'auto-terminaison. La croissance du polymère peut être arrêtée dès que quelques brins de polymère relient les deux électrodes initialement séparées. La taille de la jonction peut donc être contrôlée par cette méthode. Les jonctions au PTFQ et PFETQ ont montré des propriétés de transport ambipolaires. Lorsque les jonctions sont constituées de plusieurs fibres, un déséquilibre dans le transport est observé entre canaux de type p- et n-. Au contraire, un équilibre est mis en évidence lorsque les jonctions atteignent une taille nanométrique. Nous attribuons cet effet à un mécanisme de transport qui passe d’un régime diffusif (loi d’Ohm) à un régime balistique (quantique) lorsque les dimensions du dispositif deviennent nanométriques.Par ailleurs, le comportement d’électrodes d’ITO avec des nanoparticules d’or (Au NPs/ITO) dénote la présence de plasmons localisés de surface (LSP). Ces substrats ont été utilisés, sous irradiation lumineuse, pour activer la jonction démontrant ainsi que la résonance plasmon peut induire une réduction électrochimique. La diminution de conductance observée peut être attribuée à des électrons chauds générés par les plasmons sur les nanoparticules d’Au piégées dans la jonction de PEDOT, réduisant celui-ci en un état isolant.Enfin, des nano-fils de cuivre ont été élaborés par SECM en utilisant un procédé électrochimique. L’étude du transport a permis de suivre la formation de ces fils entre des électrodes asymétriques. Une étude similaire a été conduite sur une électrode constituée d’un film de silice mésoporeuse sur ITO. Les films ont une épaisseur de 115 nm et les filaments de cuivre sont protégés par encapsulation dans des canaux poreux verticaux d’environ 3 nm de diamètre. / Molecular electronics has attracted increasing interest in the past decades. Constructing metal/molecules/metal junctions is a basic step towards the investigation of molecular electronics. We have witnessed significant development in both experiment and theory in molecular junctions. This thesis focuses mainly on the study of charge transport through molecular junctions. Conducting polymers and copper filaments were electrochemically deposited with a scanning electrochemical microscope (SECM) configuration between a tip and a substrate electrode. In doing so, we have developed a new way to fabricate atomic contact and molecular junctions, and we have explored the possibility to control, protect and switch these systems.Firstly, SECM, where two microelectrodes are located face-to-face separated by a micrometric gap, has been successfully used for the fabrication of redox-gated conducting polymers junctions, such as PEDOT and PBT. Highly stable and reversible redox-gated nano-junctions were obtained with conductance in the 10-7-10-8 S range in their conducting states. These results, associated with the wire-like growth of the polymer, suggest that the conductance of the entire junction in the conductive state is governed by less than 20 to 100 oligomers.Secondly, to obtain the nano-junctions in a controllable way, a break junction strategy combined with the SECM set up is adopted. A nano-junction could be acquired by pulling the tip away from its initial position. And conductance traces showed that PEDOT junctions can be broken step by step before complete breakdown. Similarly as STM-BJ conductance steps were observed on a PEDOT molecular junction before break down by using SECM-BJ. SECM break junction technique proved to be an efficient way of molecular junction fabrication studies, especially for redox gated polymer molecular junctions. Moreover, a self-terminated strategy is found to be another way to obtain nano-junctions. An external resistance connected to the electrode plays an important role in controlling the size of conducting polymer junctions.PFTQ and PFETQ molecular junctions exhibit well-defined ambipolar transport properties. However, an unbalanced charge transport properties in n- and p- channel for these two polymer junctions was observed when the junctions are in the fiber device scale. In contrast, when molecular junction changes into nano-junction, a balanced n- and p-channel transport property is acquired. We propose that such effect is due to charge transport mechanism changing from diffusive (ohm’s law) to ballistic (quantum theory) when the junction size is reduced from fiber devices to nanodevices.High stable Au NPs/ITO electrodes exhibit a well localized surface plasmon (LSP) behavior. These plasmonic substrates have been successfully used to trigger switching of molecular junctions under light irradiation, demonstrating that surface plasmon resonance can induce electrochemical reduction. Such conductance reduction can be attributed to the hot electrons plasmonically generated from gold nanoparticles trapped into the PEDOT junction, resulting in PEDOT being reduced and changed to an insulating state.Finally, copper metallic nanowires were generated using an electrochemical self-terminated method based on SECM configuration. The presence of a few atoms that control the electron transport highlights the formation of metallic nanowires between the asymmetric electrodes. Furthermore, a similar study was performed on mesoporous silica film on ITO used as a substrate electrode. The mesoporous silica films have vertically aligned channels with a diameter of about 3 nm and a thickness of 115 nm, which play a crucial role in protecting the copper filament.
8

First-principles simulations of the interaction of metal-organic molecules with a surface and as building blocks for nanodevices / Etudes par simulations à l'échelle atomique de l'interaction de molécules organométalliques avec une surface et briques élémentaires pour la réalisation de nano-dispositifs

Özdamar, Burak 28 October 2016 (has links)
Ce travail de thèse est focalisé sur l'interaction de molécules organométalliques avec des métaux de transition. Cette thématique a un large éventail d'applications dans plusieurs domaines tels que la réalisation de nanojonctions pour la nano-électronique, la bioimagerie et le stockage d'énergie magnétique, la nano-catalyse et les applications biomédicales. Dans ce cadre général, ce projet de thèse vise la modélisation à l’échelle atomique des interactions fondamentales entre les briques moléculaires afin de comprendre leur rôle dans l’assemblage et la fonctionnalisation des nanostructures. L’outil principal utilisé est la dynamique moléculaire à partir des premiers principes selon les approches Born-Oppenheimer et Car-Parrinello. La première partie de cette thèse présente une rétrospective du domaine afin de donner une vision d’ensemble des méthodes utilisées et de l’état de l’art dans ce domaine. Le deuxième chapitre donne les éléments de base de la théorie et les méthodes qui ont été utilisées dans la thèse, au développement desquels on a aussi contribué pendant ce projet de recherche. Les résultats obtenus et leur discussion critique constituent le corps principal de cette ouvrage de thèse. Ceci est organisé dans un chapitre unique (troisième chapitre), divisé en trois sous-chapitre pour des raisons de clarté. / The purpose of this study is to investigate the interaction of organometallic complexes with transition metals. This topic in question has a broad array of applications in a number of domain; realization of nanojunctions for molecular nanoelectronics, biological imaging and nanocatalysis. Within this general framework, this PhD project aims to model the fundamental interactions of molecular building blocks at the atomic level in order to understand their role in the assembly and functionalization of nanostructures. The principal tool used in this study is first-principles simulation methods such as the Born-Oppenheimer and Car-Parrinello molecular dynamics. The first chapter presents an emphasis of the current developments in the related field alongside of a retrospective on the historical developments that leads today's knowledge. The second chapter presents the basic elements of the theory behind the methods that were used in the thesis, whose development has also been contributed during this research project. Lastly, the third chapter which is organized in three sub-chapters enumerates and describes the results of the various systems studied.Molecular dynamics, constrained dynamics, molecular electronics, molecular junctions, ferrocene, fullerene, metal-organic precursors.
9

Nonequilibrium Fluctuations, Quantum Optical Responses and Thermodynamics of Molecular Junctions

Goswami, Himangshu Prabal January 2016 (has links) (PDF)
Mankind has come a long way since the invention of wheel to accessing information in the quintillionth of a second. At the heart of every invention ever made, there has been only one objective, to ease the way of living. The progeny of this philosophy automatically came to be known as technology. It was technology that led to the design of the wheel for fast human transportation and the same motivation let him design more sophisticated machines. In mankind’s journey to improve technology, it began to learn efficient or correct ways to utilize and understand resources around it, creating a whole new philosophy called science. Ingeniously, it was science that let humans understand what they were made of: matter, to discovering what matter itself was composed of: atoms and what puts these together: forces. Science and technology has been of tremendous comfort for mankind and has helped it evolve throughout history. However, it is not always that science and technology go hand in hand. Technology has always helped man design devices and instruments which often bring physical comfort. Science on the other hand has made sure that loss in manual labor is compensated by increased inquisitiveness. There were times when technology was more developed than science. This was the time when machines were taking mankind by fire, resulting in the first and second industrial revolutions. During that same time, science was develop-ing slowly by increasing human curiosity to learn the way nature functioned at finer details. This led to the discovery of the electron by Joseph John Thomson, who proved the electron to be a negatively charged particle. Consequently, he was awarded the 1906 Nobel Prize in Physics for his work on electricity conduction in gases. Later, his son, George Paget Thomson, counter-proved that electrons are actually waves. He was also awarded the 1937 Nobel Prize in Physics, along with Clinton Joseph Davisson for their discovery of electron diffraction caused by crystals. Despite the ambiguity, mankind today accepts electrons to have dual properties. It is both a wave and a particle. This duality is not limited to electrons but is applicable to all matter, as proposed by Louis de Broglie and is one of the fundamental principles in science. With the help of well-developed technology, mankind can now design machines that allow controlled flow of electrons establishing the world of electronics, allowing faster human communication. The study of electronic properties and its usage in designing efficient devices is what electronics is all about. Electrons are the protagonist of mankind today. The presence of electrons is unanimously accepted by everyone. All physical and chemical processes are a result of electrons getting transported. Electron transfer processes are ubiquitous in nature, be it in photosynthesis or energy production in mitochondria . It is the fundamental process in all chemical reactions and all physical processes related to electricity. Every piece of hi-tech gadget practically uses the electron, and the whole of humanity is being serviced by it. In fact, a life without utilizing the electrons is abysmally mundane. Electronics has evolved from designing the first millimeter sized point contact transistor to silicon chip processors that contain billions of nanosized transistors. Studying electron transport has also led to the discovery of light emission during conduction popularly known as LED, an abbreviation for light emitting diode. Heating up of devices during electron transport forced mankind to study heat transport and design materials that have highly efficient electron transfer processes. Electron transfer is also the basic principle behind the Scanning Tunneling Microscope (STM), Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM) which replaced the conventional idea of using light (photons) as a source to observe matter at the nanolevel. However, mankind is still in the process of developing a technology which exploits both properties of the electron simultaneously. Today, science and technology work together to overcome this barrier. Indeed, science and technology today have come as far as controlling electron transport up to a single atomic level where quantum effects (discretization and interference of states that make up the system) are very pronounced. This branch can be referred to as quantum electronics or quantronics. It is one of the possible alternatives to conventional silicon based electronics, and is made of three separate fields. The first one that exploits the quantum nature of electron transport in nanoscopic systems, is usually called molecular electronics or moletronics. The second involves ex-ploiting the spin of the electron and is termed as spintronics. The third is the most challenging where neither science nor technology has been able to fully grasp the characteristics, i.e utilizing the heat quanta in designing thermal de-vices at the single atomic level. In general, for ultimate exploitation of both the wave and particle characteristics of the electron, a proper comprehension of the quantum effects during electron transport is necessary to design a quantronic device. Also, in any quantronic device, apart from quantum effects, fluctuations in temperature cause changes in the flow of electrons. Since electron flow is a random process, fluctuations need to be analyzed from a statistical point of view. Moreover, to address issues related to efficiency and power of these quantronic devices, a proper understanding of the thermodynamic aspects is required. The aim of the work in the thesis is to theoretically analyze the fluctuations, quantum effects and thermodynamics, that in principle, affect the basic physics and chemistry during electron and heat transport in a specific class of out of equilibrium quantum systems. This class of quantum systems are prototypes for designing quantronic devices, where both wave and particle nature of the electrons are pronounced. These are called molecular junctions or quantum junctions. It will in turn help the field of quantronics in the long run. However, in this thesis, it is the science that I address and not the technological aspects.

Page generated in 0.0865 seconds