• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectroscopie de plasma induit par laser appliquée à la détection de résidus d'explosifs

Mothe, Emilien 15 December 2011 (has links)
La menace d’attaques terroristes reste omniprésente dans de nombreux lieux à forte fréquentation. Une technique capable de détecter les substances explosives est donc nécessaire pour traiter au mieux cette menace. Initié par le Ministère de la Défense et la Direction générale de l’Armement, le projet REI ExploLIBS a pour but d’étudier le potentiel de la spectroscopie de plasma induit par laser à détecter les résidus d’explosifs. Des études expérimentales et théoriques sont menées par Bertin Technologies en collaboration avec le laboratoire LP3 – UMR 6182. L’ablation de polymères sous différentes atmosphères a permis de caractériser l’évolution spatio-temporelle de l’émission des molécules CN et C2. Le rayon d’émission, la température et la décroissance de l’intensité sont reliés au processus de formation des molécules. L’analyse complémentaire par le calcul de la composition du plasma en équilibre thermodynamique local permet de mettre en évidence la présence de molécules en fortes concentrations dans le plasma difficiles à visualiser en spectroscopie optique. Ces études ont abouti au développement d’une sonde portable dédiée à la détection des explosifs. Le taux de détection est évalué à plus de 90% et le taux de faux positif inférieur à 5%. La limite actuelle de sensibilité est estimée à 55 µg.cm-2. / The threat of terrorist attacks remains omnipresent in many high traffic sites. A technique capable of detecting explosives is needed to best address this threat. Initiated by the Ministère de la Défense and the Direction Générale de l’Armement, the project REI ExploLIBS aims to explore the potential of laser-induced breakdown spectroscopy to detect explosive residue. Experimental and theoretical studies are carried out by Bertin Technologies in collaboration with the LP3 laboratory – UMR 6182. The ablation of polymers under different atmospheres permits to characterize the spatial and temporal evolution of the emission of the CN and the C2 molecules. The radius of emission, the temperature and the decrease of the intensity are related to the formation process of the molecules. The additional analysis by the calculation of the composition of the plasma in local thermodynamic equilibrium reveals the presence of molecules in high concentrations in the plasma that are difficult to visualise in optical spectroscopy. These studies led to the development of a portable sensor dedicated to the detection of explosives. The detection rate is estimated at over 90% and the false positive rate below 5%. The current sensitivity limit is estimated at 55 µg.cm-2.
2

Application of laser-induced breakdown spectroscopy (LIBS) to the expansion of strontium (Sr) analysis options and to used engine oil

Binzowaimil, Ayed M 06 August 2021 (has links)
Laser-induced breakdown spectroscopy (LIBS) is a technique that allows quantitative and qualitative analysis of many materials. In this study, the LIBS analysis options for strontium mixture powders is expanded by increasing the number of usable strontium atomic transitions to avoid incorrect results due to spectral congestion or high strontium concentrations. The research employs double-sided tape affixed to a glass slide to hold the sample where the powder is poured onto one surface of the tape and excess dust that has not adhered is removed. This method minimizes the sample quantity needed and keeps the sample on the slide during experimentation, which also reduces costs. Herein, LIBS was used to detect and quantify the level of metal concentrations in used engine oil samples to provide valuable information about the composition of the selected material in a liquid sample. Data were obtained using multivariate analysis to develop calibration curves using LIBS spectra, which was employed for the quantification of the elements Al, Ca, Fe, Mg, and Mn. The relationship between the peak intensity of the metals in new engine oil samples and the metal concentrations in used engine oil samples were analyzed to minimize the matrix effect and the interference of element lines after which the atomic emission observed in LIBS spectra of used engine oil and new engine oil were compared. C2 molecular band emissions were also used to determine the degree of the engine oil degradation. Next, calibration models were developed for samples with high species concentrations. A partial least squares regression model was developed for calibration models to overcome matrix effect problems of some lines of each metal. This research successfully used the LIBS technique to determine the degree of engine oil degradation. This study established that used engine oil analysis using the LIBS technique can be utilized to maintain engines in good condition and to prevent engine failure. This paper presents the key findings and conclusions regarding the application of LIBS. Finally, although this technique shows many benefits and reliable results, challenges remain in terms of matrix effects, spectral pre-processing, model calibration, and instrumentation.
3

Laser-Induced Breakdown Spectroscopy for the Exploration of Mars: Analysis of Molecular Emissions and Spatial Characterization of the Plasma

Vogt, David Sebastian 17 January 2020 (has links)
Die Arbeit beschäftigt sich mit laser-induzierter Plasmaspektroskopie (LIBS) im Kontext der robotischen Mars-Erkundung. Bei LIBS wird Plasma analysiert, das durch Ablation von Probenmaterial gebildet wird. Die Methode wird seit 2012 von dem Instrument ChemCam des Mars-Rovers Curiosity eingesetzt, um das Gestein und den Boden der Marsoberfläche zu untersuchen. Sie wird auch in der NASA-Mission Mars 2020 und in der chinesischen Mission HX-1 eingesetzt werden, welche im Jahr 2020 zum Mars starten sollen. Zwei Studien dieser Arbeit betrachten Emissionen von Molekülen, die sich im Plasma bilden. Diese können zur Detektion von Chlor und Fluor eingesetzt werden, die von geologischem Interesse für Mars sind. Emissionen von MgCl und CaCl werden in simulierten Marsbedingungen für die Bestimmung der Chlorkonzentration untersucht. Nur das CaCl-Signal wird als stark genug befunden. Dieses ist am stärksten bei vergleichsweise geringen Chlorkonzentrationen, was durch einen Nichtgleichgewichtszustand des Plasmas erklärt werden kann. In der zweiten Studie werden die Emissionen von CaCl und CaF verglichen. Beide können mit demselben Modell in Abhängigkeit der Konzentrationen der Reaktionspartner beschrieben werden. Allerdings werden auch starke Matrixeffekte beobachtet, die die Emissionen beeinträchtigen können. Im letzten Teil der Arbeit wird der Plasma-Imaging-Aufbau beschrieben, der aufgebaut wurde. Der Aufbau ermöglicht räumlich aufgelöste Messungen der Emissionsspektren. Es werden erste Ergebnisse vorgestellt, die mit diesem Aufbau erzielt wurden. Diese zeigen, dass CaCl und CaF nur im Plasmazentrum emittieren, was mit einer Verdünnung und Ausbildung eines Niedertemperaturbereichs im Plasmazentrum erklärt werden kann. Atomare Emissionen von Wasserstoff, Kohlenstoff und Sauerstoff sind dagegen intensiver an der Plasmafront und zeigen Verwirbelungen auf, was auf komplexe Temperaturverteilungen und auf einen starken Einfluss von Strömungen im Plasma hinweist. / In this thesis, laser-induced breakdown spectroscopy (LIBS) is investigated in the context of the robotic exploration of Mars. In LIBS, the plasma formed by laser-ablated sample material is analyzed spectroscopically. Since 2012, it is employed by the ChemCam instrument on board the Mars rover Curiosity to analyze rocks and soil on the Martian surface. The technique will also be used in NASA's Mars 2020 mission and in the Chinese HX-1 mission, which are both scheduled to launch to Mars in 2020. The first two studies are concerned with emissions of molecules that form in the laser-induced plasma. These can be used to detect chlorine and fluorine, which are of geological interest for Mars. In the first study, MgCl and CaCl emissions are investigated for the detection and quantification of chlorine in Martian atmospheric conditions. Only the CaCl signal is found to be intense enough for this purpose. The CaCl signal is found to be skewed towards low chlorine concentrations, which is explained by a non-equilibrium model of the laser-induced plasma. In the second study, the emissions of CaCl and CaF are compared. The same model is used to describe the dependence of both signals on the respective reactant concentrations. Strong matrix effects are observed that affect the observed intensities. In the final part of the thesis the plasma imaging setup that was developed in the context of this thesis is presented. It enables spatially resolved measurements of the plasma emission spectra. First results show that CaCl and CaF emissions are confined close to the plasma center, likely because rarefaction leads to a low-temperature center in which molecules can form. Atomic emissions of hydrogen, carbon, and oxygen are more stable at the plasma front and show signs of vorticity, indicating a complex temperature distribution and a strong influence of flows within the plasma.

Page generated in 0.0551 seconds