• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 20
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 165
  • 165
  • 93
  • 73
  • 71
  • 60
  • 30
  • 21
  • 17
  • 16
  • 15
  • 14
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Mechanism of Metal delivery and binding to transport sites of Cu+-transporting ATPases

Yang, Ying 29 April 2005 (has links)
CopA, a thermophilic membrane ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu+ across cellular membranes. CopA contains at least two metal binding domains, a regulatory N-terminal Metal Binding Domain (N-MBD) and an occlusion/coordinating metal binding site in the 6th, 7th and 8th transmembrane segments. Previous studies showed that the presence of millimolar concentration of Cys is essential for CopA activity. The high affinity of CopA for metal in the presence of millimolar concentration of Cys suggests a multifaceted interaction of the enzyme with Cys. To elucidate the role of Cys, we studied its effect on the partial reactions of the catalytic cycle of CopA. We observed that 2-50 mM Cys accelerates enzyme turnover with little effect on the Cu+ affinity of CopA. Cys accelerates enzyme phosphorylation, but has no effect on the dephosphorylation rates. Thus, Cys increases steady state phosphoenzyme levels. Besides, Cys has no significant effect on E1¡ÃƒÂªE2 equilibrium. Similar results were observed in truncated CopA lacking the N-MBD suggesting that enzyme activation by Cys is independent of the regulatory metal binding sites. These results and the kinetic analysis of activation curves suggest that while Cu+ is delivered to the transport site as a Cu-Cys complex, Cys in the mM range stimulates the ATPase acting as a non-essential activator.
122

Modulation des mécanismes de Contrôle Qualité des Protéines dans la dystrophie musculaire de Duchenne / Modulation of Protein Quality Control mechanisms in Duchenne Muscular Dystrophy

Wattin, Marion 21 December 2017 (has links)
De nombreuses études ont mis en évidence l’importance du contrôle qualité des protéines, c’est à dire des mécanismes de reconformation (chaperons moléculaires) et de dégradation (autophagie, proteasome) des protéines dans différentes pathologies musculaires telles que la dystrophie musculaire d’Ullrich (UCMD), de Duchenne (DMD) ou d’Emery-Dreifuss (EDMD) ; cependant, à l’heure actuelle, aucune n’a été menée sur l’ensemble de ces mécanismes dans un seul et même modèle et sur des cellules musculaires avant leur différenciation en muscles. Nous nous sommes donc intéressés à la fonctionnalité des mécanismes de Contrôle Qualité des Protéines et à leurs interconnexions dans des myoblastes immortalisés de donneurs sains ou de patients atteints de DMD. Nous avons observé une augmentation de l’agrégation protéique dans les cellules DMD. Ce phénomène s’accompagne d’une dérégulation des mécanismes de séquestration par les chaperons moléculaires, conséquence d’une modulation de l’expression des protéines HSPB5 et HSPB8. Les mécanismes de dégradation sont également dérégulés; en effet, nous avons observé d’une part, une diminution de l’activité enzymatique du protéasome ainsi que des molécules d’adressage des protéines multiubiquitinées au protéasome et d’autre part, une augmentation de l’activité du facteur de transcription NF?B, de l’expression de protéines intervenant dans l’autophagie et des complexes BAG3/HspB8 conduisant à une augmentation du flux autophagique. L’ensemble de ces dérégulations reflète l’existence d’un stress d’agrégation protéique dans les myoblastes issus de patients DMD. Dans ce contexte, la modulation pharmacologique du PQC dans ces cellules pourrait représenter une nouvelle stratégie thérapeutique pour la Dystrophie Musculaire de Duchenne / Various studies have highlighted the importance of Protein Quality Control (PQC), including protein refolding (molecular chaperones) and degradation (autophagy, proteasome) mechanisms in inherited muscle disorders such as Ullrich Congenital Muscular Dystrophy (UCMD), Duchenne Muscular Dystrophy (DMD) or Emery-Dreifuss Muscular Dystrophy (EDMD); however, to date, no extensive study has been conducted on these mechanisms in a same model, in muscle cells before muscle differentiation. Thus, we were interested in PQC mechanisms functionality and their interconnection in human immortalized myoblasts from healthy donors or patients suffering from DMD. We observed an increase of protein aggregation in DMD cells. This phenomenon is accompanied by a deregulation of sequestration mechanisms by molecular chaperones, reflected by the modulation of HSPB5 and HSPB8 expression. Degradation mechanisms are also deregulated; indeed, we observed on one hand a decrease of proteasome enzymatic activity and multiubiquitinated proteins UPS-adressing molecules and on the other hand, an increase of NF?B transcription factor’s activity, involved in autophagy, and of BAG3/HSPB8 complexes, leading to an increase of the autophagic flux. These PQC defects reflect the existence of a protein aggregation stress in myoblasts coming from DMD patients. In this context, pharmacological modulation of PQC in these cells could represent a new therapeutic strategy for Duchenne Muscular Dystrophy
123

Uncovering how the nervous system controls the cellular stress response in the metazoan Caenorhabditis elegans

Ooi, Felicia Kye-Lyn 01 May 2018 (has links)
The ability to accurately predict danger and implement appropriate protective responses is critical for survival. Environmental fluctuations can cause damage at the cellular level, leading to the misfolding and aggregation of proteins. Such damage is toxic to cells: in age-related neurodegenerative diseases like ALS, Parkinson’s, Alzheimer’s and Huntington’s Diseases, the accumulation of damaged proteins in the brain ultimately leads to neuronal cell death and disease onset. To date, there is still no cure to combat the progressive degeneration and cell death seen in the brains of patients. Cells within an animal possess defense programs to minimize protein damage. One such defense mechanism is the activation of a program called the Heat Shock Response, which increases production of protective proteins known as heat shock proteins (HSPs). These HSPs act as molecular chaperones to assist with the clearing out of damaged proteins. This program is implemented by a conserved transcription factor, Heat Shock Factor 1 (HSF-1). However, in brains of patients with degenerative diseases, this protective mechanism, for reasons yet unknown, is not constantly activated. My thesis has involved the discovery of innate mechanisms that exist in organisms to activate this cellular protective mechanism against protein misfolding. My research, using the model organism Caenorhabditis elegans, has shown that the protective heat shock response in the cells of the animal can be triggered through neurohormonal signaling. The neurohormonal signaling that I am studying is one that is highly conserved across all organisms from plants to insects to mammals – serotonergic signaling. The stimulation of serotonergic signaling appears sufficient to activate the Heat Shock Response, even in the absence of real damage. In fact, the neuronal release of serotonin facilitates a pre-emptive upregulation of protective genes in the animal, which we have observed to be able to reduce the accumulation of damaged proteins in a C. elegans model of Huntington’s Disease. Additionally, I have seen that anticipating danger can enhance the animal’s stress response in a serotonin-dependent manner, thus facilitating better survival against a subsequent insult that can cause protein damage. Together, these studies present the novel possibility of protection against neurodegenerative disease via modulation of neurotransmission and/or neurosecretion. They also allow for understanding how sensory inputs are coupled to gene expression under stressful conditions. I hope to understand the mechanism by which animals adapt to changes in their environment by coordinating their sensory input with changes in behavior and gene expression.
124

Structure-fonction des protéines Hsp70-like chez les mycobactéries / Structure and function of Hsp70-like proteins in mycobacteria

Al-Fawares, O'la 12 April 2019 (has links)
Les protéines Hsp70 appartiennent à une famille de chaperons moléculaires très conservés qui jouent un rôle essentiel dans le contrôle qualité des protéines et qui protègent les cellules contre diverses agressions de l'environnement. Pour fonctionner comme un chaperon moléculaire, les protéines Hsp70 agissent de concert avec plusieurs co-chaperons et co-facteurs nécessaires au fonctionnement de son cycle ATPasique. Nos travaux montrent que les bactéries du genre Mycobacterium codent pour une nouvelle famille de protéines atypiques apparentées à Hsp70 dont l'architecture s'articule autour d'un domaine ATPase putatif à l'extrémité N-terminale, similaire au domaine de la superfamille Hsp70-actine, d’un segment transmembranaire (TMD) putatif et d'une longue région riche en proline/thréonine (P/T) en sa partie C-terminale. Le but de ce travail de thèse était d’étudier la fonction et la localisation cellulaire des protéines de type Hsp70 chez les mycobactéries. Nous avons d’abord constaté que la protéine Hsp70-Like de M. smegmatis (Msmg_Hsp70-Like) se localisait en foci distincts à la membrane des cellules et que son expression induisait un phénotype d’agrégation cellulaire. Afin d’éclaircir le rôle des domaines putatifs TMD et P/T, nous avons construit un ensemble de mutants dans lesquels ces éléments structurels ont été supprimés. Nous avons constaté que le domaine TMD putatif était important pour la localisation de Hsp70-Like, pour la formation des foci à la membrane et pour le phénotype d'agrégation des cellules. En revanche, le domaine riche en P/T n’a aucun effet sur ces phénotypes. In vitro, le domaine ATPase putatif de Msmg_Hsp70-Like a été purifié et des essais de cristallisation sont en cours. Des expériences supplémentaires restent cependant nécessaires pour évaluer la fonction de cette nouvelle famille de protéines. / Hsp70 belongs to a highly conserved family of molecular chaperone proteins that unambiguously plays essential roles in protein quality control, protecting cells against various environmental insults. To function as a bona fide molecular chaperone, Hsp70 acts in concert with several co-chaperones and nucleotide exchange factors to complete its ATP-dependent chaperone cycle. Our work shows that bacteria from the genus Mycobacterium encode new atypical Hsp70-Like proteins that share a common architecture: a putative ATPase domain at the N-terminus similar to members of the Hsp70-actin superfamily, a single putative transmembrane domain (TMD) in the middle of the protein and a long proline/threonine (P/T) - rich region at the C-terminal. The aim of this thesis work was to shed light on the function and the cellular localization of Hsp70-like proteins in mycobacteria. We first found that Msmg Hsp70-Like protein localizes to discrete foci within cells and that its expression induces a cell aggregation phenotype. To shed light on the role of the putative TMD and P/T- rich domains in Hsp70-Like, we engineered a set of mutants in which these structural elements were deleted. We found that the central putative TMD was important for the cell envelop localization of Hsp70-Like, for the formation of foci and for cell aggregation. In contrast, the P/T-rich had no effect on these phenomena. In vitro the putative ATPase domain of Msmg Hsp70-Like was purified and crystallization trials were performed. Further research is needed to assess the function of this novel family of proteins.
125

Hypermethylation of the MMACHC promoter is associated with methionine dependence in the human malignant melanoma cell line Me-Wo-LC1

Loewy, Amanda Duvall, 1981- January 2008 (has links)
Methionine dependence, the inability of cells to grow when the amino acid methionine is replaced in culture medium by its metabolic precursor homocysteine, is characteristic of many cancer cell lines. Most cells proliferate normally under these conditions. The methionine dependent tumorigenic human melanoma cell line MeWo-LC1 was derived from the methionine independent non-tumorigenic line MeWo. The MeWo-LC1 cell line has been shown to have a cellular phenotype similar to that of cells from patients with the cblC inborn error of cobalamin metabolism, with decreased synthesis of cobalamin coenzymes and decreased activity of the cobalamin dependent enzymes methionine synthase and methylmalonyl-CoA mutase. Inability of cblC cells to complement the defect in cobalamin metabolism in MeWo-LC1 suggested that the defect was caused by decreased activity of the MMACHC gene product. However, no potentially disease causing mutations could be detected in the coding sequence of MMACHC in MeWo-LC1. No MMACHC expression could be detected in MeWo-LC1, and there was virtually complete methylation of a CpG island at the 5' end of the MMACHC gene in MeWo-LC1, consistent with inactivation of the gene by methylation; the CpG island was partially methylated in MeWo and only lightly methylated in control fibroblasts. Transfection of MeWo-LC1 with wild type MMACHC with a constitutive promoter resulted in correction of the defect in cobalamin metabolism and restoration of the ability of cells to grow in medium containing homocysteine. We conclude that epigenetic inactivation of the MMACHC gene is responsible for methionine dependence in MeWo-LC1.
126

CHARACTERIZATION OF THE ANGIOTENSIN TYPE 1 RECEPTOR AND THE BETA2 ADRENERGIC RECEPTOR PROPERTIES: THE INVOLVEMENT OF ARRESTIN2, RAB1 AND SOME MOLECULAR CHAPERONES IN THE ASSEMBLY AND TRAFFICKING OF GPCRS

Hammad, Maha 21 July 2010 (has links)
Current drugs used to treat Congestive Heart Failure target the renin-angiotensin and adrenergic systems. Studies showed increased mortality rates in patients treated with a combination of these medications. Angiotensin-AT1 and ?2-Adrenergic receptors were shown to form receptor heteromers. Blockade of one receptor in the complex can affect the signal transmitted by the other; suggesting that ligand-based therapy is not as selective as we might think. Modulating receptor trafficking after synthesis might prove to be a valid therapeutic strategy. Unfortunately, little is known about receptor assembly and transport from Endoplasmic Reticulum to Plasma Membrane. The objectives of this study are to identify the proteins that participate in the assembly of AT1R-?2AR heteromer and the regulators of the anterograde trafficking of G-Protein Coupled Receptors. This thesis introduces the role of important targets in those poorly understood processes. The identification of such targets could lead to developing better drugs with fewer adverse effects.
127

Specific adaptations in the proteostasis network of the social amoebae Dictyostelium discoideum lead to an unusual resilience to protein aggregation

Malinovska, Liliana 14 August 2014 (has links) (PDF)
A key prerequisite for cellular and organismal health is a functional proteome. A variety of human protein misfolding diseases are associated with the occurrence of amyloid protein aggregates, such as amyotrophic lateral sclerosis (ALS) or Huntington’s disease. The proteins involved in disease manifestation all contain aggregation-prone sequences of low compositional complexity. Such sequences are also known as prion-like, because of their sequence similarity to yeast prions. Yeast prion proteins are a specific subset of amyloid forming proteins with distinct physio-chemical and functional features, which give them transmissible properties. The aggregation properties of yeast prions and disease-related prion-like proteins reside in structurally independent, prion-forming domains (PrDs). These domains are highly enriched for uncharged polar amino acids, such as glutamine (Q) and asparagine (N). These compositional features can be used to predict prion-like proteins bioinformatically. To investigate the prevalence of prion-like proteins across different organisms, we analyzed a range of eukaryotic proteomes. Our analysis revealed that the slime mold D. discoideum contains the highest number of prion-like N/Q-rich proteins of all organisms. Based on this finding, we hypothesized that D. discoideum could be a valuable model system to study protein homeostasis (proteostasis) and the molecular basis of protein misfolding diseases. To explore how D. discoideum manages its highly aggregation-prone proteome, we analyzed the behavior of several well-characterized misfolding-prone marker proteins (variants of the disease-causing exon 1 of the huntingtin protein as well as wildtype and variant versions of the Q/N-rich yeast prion Sup35NM). Intriguingly, these proteins did not form cytosolic aggregates in D. discoideum, as they do in other organisms. Aggregates, however, formed as a result of heat stress, which indicates that the tested proteins have the capacity to aggregate, but are kept under tight control under normal conditions. Furthermore, when the stress level was reduced, the stress-induced aggregates dissolved, suggesting that D. discoideum has evolved mechanisms to reverse aggregation after a period of acute stress. Together, these findings reveal an unusual resilience of D. discoideum to aggregation-prone proteins, which very likely results from specific adaptations in its proteostasis network. By studying these specific adaptations, we could get important insight into the strategies that nature employs to control and maintain a highly aggregation-prone proteome. So far, our experimental investigations have revealed evidence for three specific adaptations. First, we identified the disaggregase Hsp101 as a key player in the acute stress response of D. discoideum. A functional analysis of Hsp101 in yeast and D. discoideum revealed that it supports thermotolerance. Second, we found evidence for an important role of the nucleus and nucleolus in proteostasis. We discovered that a small fraction of highly aggregation-prone proteins accumulated in the nucleus or nucleolus of D. discoideum cells. The magnitude of this nuclear accumulation could be increased by proteasome impairment, which suggests that the ubiquitin-proteasome system (UPS) is involved. This finding is consistent with previous studies in other organisms and hints at the possibility that D. discoideum disposes of aggregation-prone proteins by degrading them in the nucleus/nucleolus. Third and finally, we found that cells containing nuclear accumulations are asymmetrically distributed in the multicellular developmental stage (slug), suggesting that D. discoideum employs cell-sorting mechanisms to dispose of cells with accumulated protein damage. Although our current understanding of proteostasis in D. discoideum is preliminary, we have gained important insight into the molecular mechanisms and cellular pathways that D. discoideum uses to counteract protein aggregation. Findings from this work will inform similar comparative studies in other organisms and will impact our molecular understanding of protein misfolding diseases and aging. / Eine wesentliche Voraussetzung für die Gesundheit von Zellen und Organismen ist ein funktionales Proteom. Eine Reihe von humanen Protein- Missfaltungs-Erkrankungen, wie Chorea Huntington und Amyotrophe Lateralsklerose (ALS) werden mit dem Auftreten von amyloiden Protein- Aggregaten in Verbindung gebracht. Sämtliche Proteine, die in der Pathogenese dieser Krankheiten eine Rolle spielen, enthalten aggregations-anfällige Sequenzen mit geringer Sequenzkomplexität. Solche Sequenzen werden als Prion-ähnlich bezeichnet, da sie in ihrer Zusammensetzung den Prionen aus der Hefe S. cerevisiae gleichen. Die Prion-Proteine der Hefe gehören zu einer Unterart von amyloid-aggregierenden Proteinen, die durch bestimmte physikochemische und funktionelle Eigenschaften einen infektiösen Charakter erhalten. Die Aggregations-Eigenschaften von Hefeprionen und aggregationsanfällige Proteinen, die mit Erkrankungen in Verbindung gebracht werden, basieren auf strukturell unabhängigen, Prion-bildenden Domänen (prion domain, PrD). Diese Domänen sind angereichert mit polaren Aminosäuren wie Glutamin und Asparagin. Diese Zusammensetzung kann dazu verwendet werden prion-ähnliche Proteine bioinformatisch vorherzusagen. Um die Verbreitung von Prion-ähnlichen Proteinen in verschiedenen Organismen zu untersuchen, analysierten wir eine Reihe von eukaryotischen Proteomen. Unsere Analyse zeigte, dass der Schleimpilz D. discoideum die höchste Anzahl von Prion-ähnlichen N/Q-reichen Proteinen aufzeigt. Aufgrund dieser Erkenntnisse erstellten wir die Hypothese, dass D. discoideum ein nützlicher Modellorganismus sein könnte, um Protein Homöostase (Proteostase) sowie die molekulare Basis von Proteins-Missfaltungs-Erkrankungen zu ergründen. Um zu analysieren, wie D. discoideum mit seinem höchst aggregations-anfälligen Proteom umgehen kann, untersuchten wir das Verhalten mehrerer bereits charakterisierter aggregations-anfälliger Marker-Proteine in D. discoideum. Hierbei verwendeten wir Varianten des krankheits-erzeugenden Exon 1 des humanen Huntingtin Protein sowie den wild-typ und Varianten des N/Q-reichen Hefe Prions Sup35. Interessanterweise bildeten diese Proteine, anders als in anderen Organismen, keine zytosolischen Aggregate in D. discoideum aus. Aggregate wurden jedoch unter Hitzestress-Bedingungen gebildet. Dies deutet darauf hin, dass die getesteten Proteine durchaus das Vermögen zu aggregieren besitzen, jedoch unter normalen Wachstumsbedingungen streng kontrolliert werden. Wenn, darüberhinaus das Stress- Level gesenkt wurde, kam es zur Auflösung der stress-induzierten Aggregate. Dies deutet darauf hin, dass D. discoideum Mechanismen entwickelt hat, um Aggregate nach Perioden von akutem Stress wieder aufzulösen. Zusammengenommen enthüllen diese Erkenntnisse eine ungewöhnliche Widerstandsfähigkeit gegenüber aggregations-anfälligen Proteinen. Diese beruht höchstwahrscheinlich auf spezifischen Modifikationen im Proteostase Netzwerk. Durch die Analyse dieser spezifischen Anpassungen könnten wichtige Einblicke in die Strategien gewährt werden, welche die Natur benutzt, um ein höchst aggregations-anfälliges Proteom zu erhalten und zu kontrollieren. Bisher erbrachten unsere Experimente Anhaltspunkte für drei spezifische Anpassungen. Erstens zeigten wir, dass die Disaggregase Hsp101 eine Schlüsselrolle in der akuten Stressantwort in D. discoideum einnimmt. Eine funktionale Analyse von Hsp101 in D. discoideum und Hefe zeigte, dass die Disaggregase Thermotoleranz fördert. Zweitens haben wir Anhaltspunkte, dass der Nukleus und der Nukleolus eine wichtige Rolle in der Proteostase einnehmen. Eine geringe Fraktion der überaus aggregations-anfälligen Proteine akkumuliert im Nukleus oder Nukleolus von D. discoideum. Das Ausmaß der nuklearen Akkumulation konnte erhöht werden, wenn das Proteasom beeinträchtigt wird. Dies deutet darauf hin, dass das Ubiquitin-Proteasom-System involviert sein könnte. Diese Beobachtung ist im Einklang mit jüngsten Berichten aus anderen Organismen und daraus folgt, dass D. discoideum möglicherweise aggregations-anfällige Proteine durch Abbau im Nukleus entsorgt. Drittens konnten wir feststellen, dass Zellen, die nukleare Akkumulationen enthalten, asymmetrisch in der multizellulären Entwicklungs-Struktur des Pseudoplasmodiums verteilt sind. Dies deutet darauf hin, dass D. discoideum möglicherweise den Zellsortierungsmechanismus während der Entwicklung nutzen kann, um Zellen mit angereicherten Protein-Schäden zu beseitigen. Auch wenn das gegenwärtige Verständnis der Proteostase in D. discoideum nur vorläufig ist, haben wir wichtige Einblicke in die molekularen Mechanismen und zellulären Prozesse erhalten, die D. discoideum verwendet, um Protein-Aggregation zu verhindern. Die Ergebnisse dieser Arbeit werden ähnliche vergleichende Studien in anderen Organismen beeinflussen und Auswirkungen auf unser molekulares Verständnis über Protein-Missfaltungs-Erkrankungen und das Altern haben.
128

Oxygen is required to retain Ero1[alpha] on the MAM

Gilady, Susanna Yael. January 2009 (has links)
Thesis (M.Sc.)--University of Alberta, 2009. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Cell Biology. Title from pdf file main screen (viewed on October 24, 2009). Includes bibliographical references.
129

The role of histone chaperones in double-strand DNA repair and replication-independent histone exchange /

Linger, Jeffrey G. January 2006 (has links)
Thesis (Ph.D. in Biochemistry) -- University of Colorado, 2006. / Typescript. Includes bibliographical references (leaves 153-171). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
130

Analise da expressão de chaperonas moleculares em plantas e clonagem, purificação e caracterização inicial das proteinas Hsp100 e Hsp90 de cana-de-açucar / Expression analysis of plant molecular chaperones and cloning, purification and primary charaterization of the proteins Hsp 100 and Hsp90 from sugarcane

Cagliari, Thiago Carlos 05 August 2009 (has links)
Orientador: Carlos Henrique Inacio Ramos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-13T20:53:19Z (GMT). No. of bitstreams: 1 Cagliari_ThiagoCarlos_D.pdf: 4482929 bytes, checksum: a1439ac0cca9a21c77eb47d2e163c224 (MD5) Previous issue date: 2009 / Resumo: As proteinas sao macromoleculas que possuem importancia vital para o funcionamento celular, participando da maioria das reacoes biologicas e tambem como componentes estruturais. Para que uma proteina possa exercer sua funcao, precisa atingir sua estrutura nativa atraves de um processo denominado enovelamento proteico. Neste contexto, as chaperonas moleculares sao proteinas capazes de auxiliar no enovelamento de outras proteinas, atuando na prevencao de agregados, desagregacao, translocacao, ativacao, entre outros. Dentre os muitos tipos de chaperonas existentes, neste trabalho foram abordadas as chaperonas das familias Hsp100 e Hsp90, as quais estao relacionadas aos processos de desagregacao e auxilio do enovelamento de proteinas-substrato, respectivamente. O presente trabalho pretendeu produzir as proteinas recombinantes Hsp100 e Hsp82 de cana-de-acucar para a caracterizacao de suas respectivas relacoes estrutura-funcao. Para isto foram empregadas tecnicas como: dicroismo circular, fluorescencia, espalhamento dinamico de luz e ultracentrifugacao analitica. Assim, foi observado que a forca ionica do meio e capaz de influenciar a estrutura quaternaria da proteina Hsp100, a qual se apresenta hexamerica em menores concentracoes de sal. Alem disto, e capaz de reconhecer agregados proteicos formados pelas proteinas luciferase e citrato sintase em ensaios in vitro. Ja a proteina Hsp82 apresentou uma estrutura dimerica, a qual nao e influenciada pela presenca de nucleotideos e apresenta grande estabilidade termica. Finalmente, a proteina p23 humana, a qual e responsavel por auxiliar a proteina Hsp90 no enovelamento de muitas proteinas/complexos proteicos, tambem foi caracterizada. Foram observados indicios de que a regiao C-terminal, rica em residuos de aminoacidos carregados, pode possuir algum grau de estruturacao, apesar de alguns estudos na literatura indicarem o contrario. O estudo das chaperonas de cana-de-acucar foi direcionado por um trabalho previo de anotacao de sequencias relacionadas as chaperonas moleculares no banco de dados do projeto SUCEST (Sugarcane EST Genome Project), o qual foi realizado por nosso grupo de pesquisa. Alem disto, sao apresentados os resultados da anotacao das sequencias relacionadas as chaperonas de eucalipto no banco de dados FORESTs (Eucalyptus Genome Sequencing Project Consortium), possibilitando futuros estudos com estas proteinas. / Abstract: Proteins are macromolecules that are vital to the functioning cell, participating in most of the biological reactions as well as structural components. To perform its function, a protein need to achieve its native structure through a process called protein folding. In this context, the molecular chaperone proteins are able to assist in the folding of other proteins, acting in the prevention of aggregation, disaggregation, translocation, activation, among others. From all types of existing chaperones, here were highlight the Hsp100 and Hsp90 families, which are related to processes of disaggregation and assistance of substrateprotein folding, respectively. This study sought to produce the recombinant proteins Hsp100 and Hsp82 from sugar cane for the characterization of their structure-function relationships. In order to do this, some techniques were employed such as: circular dichroism, fluorescence, dynamic light scattering and analytical ultracentrifugation. As a result, it was observed that the ionic strength of the solvent is capable of influencing the quaternary structure of protein Hsp100, which presents as a hexamer in lower salt concentrations. Furthermore, it is capable of recognizing protein aggregates formed by luciferase protein and citrate synthase in in vitro essays. The Hsp82 protein showed a dimeric structure, which was not influenced by the presence of nucleotides and presented a great thermal stability. Finally, the human protein p23, which is responsible for assisting in the Hsp90 protein folding of many proteins/protein complexes, was also characterized. In spite of some studies indicating the contrary, we observed evidence that the C-terminal region, which is rich in charged amino acid residues, can possible have some structure. The sugarcane chaperones study was guided by a previous chaperone sequence annotation work in the SUCEST (Sugarcane EST Genome Project) databank performed by our research group. In addition, results regarding chaperone sequences annotation in the eucalyptus databank (FORESTs - Eucalyptus Genome Sequencing Project Consortium) were presented here as well, which can also lead to future chaperone proteins function and structure studies. / Doutorado

Page generated in 0.0942 seconds