• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 4
  • 4
  • 2
  • Tagged with
  • 63
  • 63
  • 30
  • 23
  • 21
  • 19
  • 18
  • 16
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Transition From Diffuse to Dense Molecular Clouds

Rice, Johnathan Scott January 2018 (has links)
No description available.
52

Simulating Cluster Formation and Radiative Feedback in Molecular Clouds

Howard, Corey S. 10 1900 (has links)
<p>The formation of star clusters occurs in a complex environment and involve a large number of physical processes. One of the most important processes to consider is radiative feedback. The radiation released by forming stars heats the surrounding gas and suppresses the fragmentation of low mass objects. Ionizing radiation can also drive large scale outflows and disperse the surrounding gas. Owing to all this complexity, the use of numerical simulations to study cluster formation in molecular clouds has become commonplace. In order to study the effects of radiative feedback on cluster formation over larger spatial scales than previous studies, we present hydrodynamical simulations using the AMR code FLASH which make use of cluster particles. Unlike previous studies, these particles represent an entire star cluster rather than individual stars. We present a subgrid model for representing the radiative output of a star cluster which involves randomly sampling an IMF over time to populate the cluster. We show that our model is capable of reproducing the properties of observed clusters. The model was then incorporated into FLASH to examine the effects of radiative feedback on cluster formation in full hydrodynamical simulations. We find that the inclusion of radiative transfer can drive large scale outflows and decreases the overall star formation efficiency by a factor of 2. The inclusion of radiative feedback also increases the degree of subclustering. The use of cluster particles in hydrodynamical simulations represents a promising method for future studies of cluster formation and the large scale effects of radiative feedback.</p> / Master of Science (MSc)
53

Evolving Starburst Model of FIR/sub-mm/mm Line Emission and Its Applications to M82 and Nearby Luminous Infrared Galaxies

Yao, Lihong 08 March 2011 (has links)
This thesis presents a starburst model for far-infrared/sub-millimeter/millimeter (FIR/sub-mm/mm) line emission of molecular and atomic gas in an evolving starburst region, which is treated as an ensemble of non-interacting hot bubbles which drive spherical shells of swept-up gas into a surrounding uniform gas medium. These bubbles and shells are driven by winds and supernovae within massive star clusters formed during an instantaneous starburst. The underlying stellar radiation from the evolving clusters affects the properties and structure of photodissociation regions (PDRs) in the shells, and hence the spectral energy distributions (SEDs) of the molecular and atomic line emission from these swept-up shells and the associated parent giant molecular clouds (GMCs) contains a signature of the stage evolution of the starburst. The physical and chemical properties of the shells and their structure are computed using a a simple well known similarity solution for the shell expansion, a stellar population synthesis code, and a time-dependent PDR chemistry model. The SEDs for several molecular and atomic lines ($^{12}$CO and its isotope $^{13}$CO, HCN, HCO$^+$, C, O, and C$^+$) are computed using a non-local thermodynamic equilibrium (non-LTE) line radiative transfer model. By comparing our models with the available observed data of nearby infrared bright galaxies, especially M 82, we constrain the models and in the case of M 82, provide estimates for the age of the recent starburst activity. We also derive the total H$_2$ gas mass in the measured regions of the central 1 kpc starburst disk of M 82. In addition, we apply the model to represent various stages of starburst evolution in a well known sample of nearby luminous infrared galaxies (LIRGs). In this way, we interpret the relationship between the degree of molecular excitation and ratio of FIR to CO luminosity to possibly reflect different stages of the evolution of star-forming activity within their nuclear regions. We conclude with an assessment of the strengths and weaknesses of this approach to dating starbursts, and suggest future work for improving the model.
54

Evolving Starburst Model of FIR/sub-mm/mm Line Emission and Its Applications to M82 and Nearby Luminous Infrared Galaxies

Yao, Lihong 08 March 2011 (has links)
This thesis presents a starburst model for far-infrared/sub-millimeter/millimeter (FIR/sub-mm/mm) line emission of molecular and atomic gas in an evolving starburst region, which is treated as an ensemble of non-interacting hot bubbles which drive spherical shells of swept-up gas into a surrounding uniform gas medium. These bubbles and shells are driven by winds and supernovae within massive star clusters formed during an instantaneous starburst. The underlying stellar radiation from the evolving clusters affects the properties and structure of photodissociation regions (PDRs) in the shells, and hence the spectral energy distributions (SEDs) of the molecular and atomic line emission from these swept-up shells and the associated parent giant molecular clouds (GMCs) contains a signature of the stage evolution of the starburst. The physical and chemical properties of the shells and their structure are computed using a a simple well known similarity solution for the shell expansion, a stellar population synthesis code, and a time-dependent PDR chemistry model. The SEDs for several molecular and atomic lines ($^{12}$CO and its isotope $^{13}$CO, HCN, HCO$^+$, C, O, and C$^+$) are computed using a non-local thermodynamic equilibrium (non-LTE) line radiative transfer model. By comparing our models with the available observed data of nearby infrared bright galaxies, especially M 82, we constrain the models and in the case of M 82, provide estimates for the age of the recent starburst activity. We also derive the total H$_2$ gas mass in the measured regions of the central 1 kpc starburst disk of M 82. In addition, we apply the model to represent various stages of starburst evolution in a well known sample of nearby luminous infrared galaxies (LIRGs). In this way, we interpret the relationship between the degree of molecular excitation and ratio of FIR to CO luminosity to possibly reflect different stages of the evolution of star-forming activity within their nuclear regions. We conclude with an assessment of the strengths and weaknesses of this approach to dating starbursts, and suggest future work for improving the model.
55

Shocks, Superbubbles, and Filaments: Investigations into Large Scale Gas Motions in Giant Molecular Clouds

Pon, Andrew Richard 25 April 2013 (has links)
Giant molecular clouds (GMCs), out of which stars form, are complex, dynamic systems, which both influence and are shaped by the process of star formation. In this dissertation, I examine three different facets of the dynamical motions within GMCs. Collapse modes in different dimensional objects. Molecular clouds contain lower dimensional substructures, such as filaments and sheets. The collapse properties of finite filaments and sheets differ from those of spherical objects as well as infinite sheets and filaments. I examine the importance of local collapse modes of small central perturbations, relative to global collapse modes, in different dimensional objects to elucidate whether strong perturbations are required for molecular clouds to fragment to form stars. I also calculate the dependence of the global collapse timescale upon the aspect ratio of sheets and filaments. I find that lower dimensional objects are more readily fragmented, and that for a constant density, lower dimensional objects and clouds with larger aspect ratios collapse more slowly. An edge-driven collapse mode also exists in sheets and filaments and is most important in elongated filaments. The failure to consider the geometry of a gas cloud is shown to lead to an overestimation of the star formation rate by up to an order of magnitude. Molecular tracers of turbulent energy dissipation. Molecular clouds contain supersonic turbulence that simulations predict will decay rapidly via shocks. I use shock models to predict which species emit the majority of the turbulent energy dissipated in shocks and find that carbon monoxide, CO, is primarily responsible for radiating away this energy. By combining these shock models with estimates for the turbulent energy dissipation rate of molecular clouds, I predict the expected shock spectra of CO from molecular clouds. I compare the results of these shock models to predictions for the emission from the unshocked gas in GMCs and show that mid-to-high rotational transitions of CO (e.g., J = 8 to 7), should be dominated by shocked gas emission and should trace the turbulent energy being dissipated in molecular clouds. Orion-Eridanus superbubble. The nearby Orion star forming region has created a large bubble of hot plasma in the local interstellar medium referred to as the Orion-Eridanus superbubble. This bubble is unusual in that it is highly elongated, is believed to be oriented roughly parallel to the galactic plane, and contains bright filamentary features on the Eridanus side. I fit models for a wind driven bubble in an exponential atmosphere to the Orion-Eridanus superbubble and show that the elongation of the bubble cannot be explained by such a model in which the scale height of the galactic disk is the typical value of 150 pc. Either a much smaller scale height must be adopted or some additional physics must be added to the model. I also show that the Eridanus filaments cannot be equilibrium objects ionized by the Orion star forming region. / Graduate / 0606 / andyrpon@gmail.com
56

Formation of stars and stellar clusters in galactic environment

Smilgys, Romas January 2018 (has links)
Star and stellar cluster formation in spiral galaxies is one of the biggest questions of astrophysics. In this thesis, I study how star formation, and the formation of stellar clusters, proceeds using SPH simulations. These simulations model a region of 400 pc and 107 solar masses. Star formation is modelled through the use of sink particles which represent small groups of stars. Star formation occurs in high density regions, created by galactic spiral arm passage. The spiral shock compresses the gas and generates high density regions. Once these regions attain sufficiently high density, self-gravity becomes dominant and drives collapse and star formation. The regions fragment hierarchically, forming local small groups of stars. These fall together to form clusters, which grow through subsequent mergers and large scale gas infall. As the individual star formation occurs over large distances before forming a stellar cluster, this process can result in significant age spreads of 1-2 Myrs. One protocluster is found to fail to merge due to the large scale tidal forces from the nearby regions, and instead expands forming a dispersed population of young stars such as an OB association.
57

Mass assembly in star formation via interstellar filaments

Chen, Michael Chun-Yuan 28 January 2021 (has links)
Understanding how diffuse molecular clouds at large scales (~10 pc) assemble mass into dense, star-forming cores at small scales (~ 0.1 pc) is crucial to building a holistic theory of star formation. While recent observations suggest that filaments play an important role in the mass assembly of dense cores, detailed gas kinematics studies are still lacking. My dissertation presents three innovative techniques that enable us to study star-forming filaments' complex gas kinematics in unprecedented detail: multi-component spectral fit, multi-dimensional filament identification, and membership assignment of velocity-coherent structures. Through these techniques, I analyzed star-forming filaments in the Perseus Molecular Cloud and unveiled unexpectedly complex velocity structures at scales where filaments are well resolved, to as low as the 0.01 pc scale. Moreover, the correlations I discovered between the various filament properties further suggest a scenario in which thermally supercritical filaments grow continuously via accretion from their surroundings while simultaneously forming cores through fragmentation along their lengths. / Graduate / 2022-01-08
58

Simulating Protostellar Evolution and Radiative Feedback in the Cluster Environment

Klassen, Mikhail 10 1900 (has links)
<p>Stars form in clusters amidst complex and coupled physical phenomena. Among the most important of these is radiative feedback, which heats the surrounding gas to suppress the formation of many low-mass stars. In simulations of star formation, pre-main-sequence modeling has often been neglected and stars are assumed to have the radii and luminosities of zero-age main sequence stars. We challenge this approach by developing and integrating a one-zone protostellar evolution model for FLASH and using it to regulate the radiation output of forming stars. The impact of accurate pre-main-sequence models is less ionizing radiation and less heating during the early stages of star formation. For stars modeled in isolation, the effect of protostellar modeling resulted in ultracompact HII regions that formed slower than in the ZAMS case, but also responded to transitions in the star itself. The HII region was seen to collapse and subsequently be rebuilt as the star underwent a swelling of its radius in response to changes in stellar structure and nuclear burning. This is an important effect that has been missed in previous simulations. It implies that observed variations in HII regions may signal changes in the stars themselves, if these variation can be disentangled from other environmental effects seen in the chaotic cluster environment.</p> / Master of Science (MSc)
59

VHE and multi-wavelength data analysis of HESS J1741−302

Angüner, Ekrem Oǧuzhan 17 May 2016 (has links)
HESS J1741−302 ist eine nicht identifizierte Quelle sehr hochenergetischer Gammastrahlen, welche circa 1,7 Grad vom Zentrum der Milchstraße entfernt liegt. Diese Quelle ist eines der schwächsten Objekte im TeV-Bereich mit einem Photonfluss von Φ(>1 TeV) = (1.65 ± 0.28stat ± 0.33sys) × 10^−13 cm^−2 s^−1, was ~1% des Krebsnebelflusses im gleichen Energiebereich entspricht. Die Analyse des aktuellen H.E.S.S. Datensatzes von 145 Stunden Beobachtungen mit hoher Qualität gibt Einblicke in die Morphologie von HESS J1741−302. Das Energiespektrum von HESS J1741−302 geht über 10 TeV hinaus, ohne dabei ein klares Anzeichen für einen spektralen Abbruch zu zeigen. Das Spektrum kann durch ein Potenzgesetz mit einem spektralen Index von Γ = 2.28 ± 0.16stat ± 0.20sys und einer Normierung bei 1 TeV von Φ0 = (2.12 ± 0.42stat ± 0.42sys) × 10^−13 cm^−2 s^−1 TeV^−1 beschrieben werden. In der vorliegenden Arbeit werden verschiedene Szenarien für die beobachtete Gammastrahlung und deren Entstehung in Betracht gezogen. Diese beinhalten die Wechselwirkung von Protonen der kosmischen Strahlung mit Molekülwolken entlang der Sichtlinie, IC Streuung an Infrarot-Photonen eines nahe gelegenen OH/IR Sterns und die Präsenz eines Pulsarwindnebels, welcher möglicherweise zu PSR B1737−30 gehört. / HESS J1741−302 is an unidentified very-high-energy (VHE) γ-ray source located in the Galactic Plane at about 1.7° away from the Galactic Center. It is one of the faintest TeV objects detected so far, with a flux Φ(>1 TeV) = (1.65 ± 0.28stat ± 0.33sys) × 10^−13 cm^−2 s^−1 corresponding to ~ 1% of the Crab Nebula flux at the same energies. The data analysis of an updated high-quality dataset of ~145 hours of VHE H.E.S.S. data taken between 2004 and 2013 has revealed the morphology of HESS J1741−302. The γ-ray spectrum of HESS J1741−302 extends beyond 10 TeV without showing any clear evidence of a cut-off. The source spectrum is well described by a power-law model with a spectral index of Γ = 2.28 ± 0.16stat ± 0.20sys and a normalization at 1 TeV of Φ0 = (2.12 ± 0.42stat ± 0.42sys) × 10^−13 cm^−2 s^−1 TeV^−1. Different scenarios will be considered in this thesis, including the interaction of cosmic-ray protons with molecular clouds found along the line of sight, inverse Compton scattering of infra-red photons provided by a nearby OH/IR star and the presence of a nearby pulsar wind nebula possibly related to PSR B1737−30, in order to explain the observed VHE gamma-ray emission.
60

Study of photo-induced and radical reactions between CH4 and NH3 : astrochemical applications / Étude de réactions photo-induites et radicalaires entre CH4 et NH3 pour des applications astrochimiques

Jonušas, Mindaugas 28 May 2018 (has links)
L'eau joue un rôle fondamental dans la photochimie du milieu interstellaire (MIS), à travers la formation d'espèces très réactives comme OH. Les radicaux OH peuvent par la suite interagir avec d'autres molécules hydrogénées pour reformer H2O par abstraction d'hydrogène: R-H + OH → R* + H2O. Dans le cadre de ce travail de thèse, nous avons étudié l'influence des photons VUV sur des analogues de glace interstellaire. Nous montrons que l'incorporation d'une petite quantité d'eau dans NH3 et CH4 glaces augmente considérablement la formation de radicaux réactifs comme NH2 et CH3 pendant le processus de photolyse et que le chauffage des glaces binaires irradiées telles que NH3-H2O et CH4-H2O conduit à la formation de NH2OH et d'espèces alcooliques plus complexes comme le propanol et le métoxyméthanol. Nous avons également entamé d'autres études en parallèle sur le l'évolution thermique des glaces de NH2OH d'une part et la formation de propanol par voies énergétiques (irradiation VUV) et non énergétique (réaction d'addition H) d'autre part afin de tenter d'expliquer la non-détection des ces espèces organiques dans le milieu interstellaire. L'étude des glaces mixtes irradiées NH3-CH4-H2O a montré la formation à basse température d'espèces plus exotiques en combinant les spectrométries IR et de masse. Nous avons réussi à identifier des composés organiques très complexes déjà détectés ou activement recherchés dans le MIS. / Water plays a fundamental role in the photochemistry of the interstellar medium (ISM), through OH radical formation. OH radicals can interact with other H-containing species to form H2O through a hydrogen abstraction reaction: R-H + OH → R* + H2O. In this work, we have investigated the VUV processing on different interstellar ice analogs. We show that the incorporation of small amount of water in NH3 and CH4 ices greatly increases the formation of reactive NH2 and CH3 radicals during the photolysis processing. Thermal treatments of irradiated NH3-H2O and CH4-H2O ices lead to the formation of NH2OH and larger alcoholic species such as propanol and metoxymethanol. Further studies of thermal processing of NH2OH ice and formation of propanol through energetic (VUV irradiation) and non-energetic (surface H-addition reaction) processing were carried out in the context of this thesis in order to try explaining their non-detection in the interstellar medium. The study of the irradiated mixed NH3-CH4-H2O ices showed the formation of more exotic species by combining the IR and mass spectrometries. We managed to identify very large complex organic compounds already detected or tensively sought in the ISM.

Page generated in 0.0333 seconds