• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 49
  • 49
  • 16
  • 13
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

ROLE OF SCAVENGER RECEPTOR CLASS B TYPE I IN THYMOPOIESIS

Zheng, Zhong 01 January 2014 (has links)
T cells, which constitute an essential arm in the adaptive immunity, complete their development in the thymus through a process called thymopoiesis. However, thymic involution can be induced by a couple of factors, which impairs T cell functions and is slow to recover. Therefore, understanding how thymopoiesis is regulated may lead effort to accelerate thymic recovery and improve immune functions in thymocyte-depleted patients. In this project, we identified scavenger receptor BI (SR-BI), a high density lipoprotein (HDL) receptor, as a novel modulator in thymopoiesis. In mice, absence of SR-BI causes a significant reduction in thymus size after puberty and a remarkable decrease in thymic output. Consequently, SR-BI-null mice show a narrowed naïve T cell pool in the periphery and blunted T cell responses, indicating that the impaired thymopoiesis due to SR-BI deficiency leads to compromised T cell homeostasis and functions. The impaired thymopoiesis of SR-BI-null mice is featured by a significant reduction in the percentage of earliest T progenitors (ETPs) but unchanged percentages of other thymocyte subtypes, suggesting that SR-BI deficiency causes a reduction in progenitor thymic entry. Further investigations reveal that SR-BI deficiency impairs thymopoiesis through affecting bone marrow progenitor thymic homing without influencing the lymphoid progenitor development in bone marrow. Importantly, SR-BI-null mice exhibit delayed thymic recovery after sublethal irradiation, indicating that SR-BI is also required for thymic regeneration. Using bone marrow transplantation models, we elucidate that it is non-hematopoietic rather than hematopoietic SR-BI deficiency that results in the defects in thymopoiesis. However, SR-BI deficiency-induced hypercholesterolemia is not responsible for the impaired thymopoiesis. Using adrenal transplantation models, we found that absence of adrenal SR-BI is responsible for the impaired thymopoiesis, as shown by that adrenalectomized mice transplanted with SR-BI-null adrenal gland display reduced thymus size, decreased percentage of ETPs and delayed thymic regeneration compared with those transplanted with wild-type adrenal. Altogether, results from this study elucidate a previously unrecognized role of SR-BI in thymopoiesis. We reveal that SR-BI expressed in adrenal gland is critical in maintaining normal T cell development and enhancing thymic regeneration, providing novel links between adrenal functions and T cell development.
62

Detecção, caracterização molecular e diversidade genética de begomovirus que infectam fava (Phaseolus lunatus L.) / Detection, molecular characterization and genetic diversity of the begomovirus the infect lima bean (Phaseolus lunatus)

Silva, Sarah Jacqueline Cavalcanti da 29 March 2006 (has links)
Lima bean (Phaseolus lunatus L.) is one of the four major important grain legumes in Brazil. The occurrence of diseases has difficulted its culture and has affected grain quality of this crop. Among the most important diseases are the viruses, especially those generated from Geminivirus. The high severity of the Geminiviruses diseases is especially due to both the absence of pathogen resistance varieties and increase in the population of a new biotype (biotype B), of the insect vector, commonly named whitefly (Bemisia tabaci). This biotype transmitis the virus more efficiently and it presents a host range larger than biotype A. The present estudy objected the detection, molecular characterization and analisys of the genetic diversity of Begomovirus isolates that infects lima bean plats in Alagoas and Pernambuco States. The detection was realized by PCR technique utilizing as a mold DNA extracted from plants presenting symptoms of geminivirus infection which were colleted from seven locations of Alagoas and one of Pernambuco. It was identified Begomovirus infection in seventeen collected samples. The analisys of genetic diversity, based in PCR-RFLP, revealed that exists diversity among the isolates of Begomovirus that were infecting these plants. According to differences in the patterns of bands generated by PCR-RFLP, it was chosen three isolates (fava Maceió, fava Recife and fava União dos Palmares), in an attempt to sequence analysis. The comparison of the obtained sequences with other deposited in GenBank/NCBI allowed the classification of these isolates as Bean golden mosaic virus, the last one being the first report of infection caused this species in lima bean plants in Alagoas and Pernambuco State. / Fundação de Amparo a Pesquisa do Estado de Alagoas / A fava (Phaseolus lunatus L.) está entre as quatro espécies de leguminosas de grãos mais importantes no Brasil. A ocorrência de doenças tem dificultado o cultivo e afetado a qualidade dos grãos dessa cultura. Entre as doenças mais importantes, estão as viroses, destacando-se aquelas ocasionadas por Geminivirus. A alta severidade das doenças causadas por geminivírus, deve-se principalmente à ausência de variedades resistentes ao patógeno e também ao aumento populacional de um novo biótipo (biótipo B) do inseto vetor, vulgarmente denominado, "mosca branca" (Bemisia tabaci). Este biótipo transmite o vírus mais eficientemente e apresenta uma gama de hospedeiros mais ampla do que o biótipo A. O presente trabalho teve como objetivos principais a detecção, caracterização molecular e a análise da diversidade genética de isolados de Begomovirus que infectam plantas de fava no Estado de Alagoas e Pernambuco. A detecção foi realizada mediante a técnica de PCR utilizando como molde o DNA extraído de plantas com sintomas de infecção por geminivírus, coletadas em sete municípios de Alagoas e em um de Pernambuco. Foi diagnosticada infecção por Begomovirus em dezessete amostras coletadas. A análise da diversidade genética, baseada em PCR-RFLP, demonstrou que existe diversidade entre os isolados de begomovírus que estavam infectando estas plantas. A partir das diferenças nos padrões de bandas gerados através da PCR-RFLP, foram escolhidos três isolados (Fava Maceió, Fava Recife e Fava União dos Palmares), para fins de seqüenciamento. A comparação das seqüências obtidas, com outras seqüências depositadas do GenBank/NCBI permitiu a classificação desses isolados como Bean golden mosaic virus, sendo este o primeiro relato de infecção por esta espécie em plantas de fava, nos estados de Alagoas e Pernambuco.
63

Estudo da regulação da expressão do gene da proteína prion celular / Cellular prion protein gene expression regulation

Ana Lucia Beirão Cabral 26 July 2001 (has links)
A conversão da proteína prion celular normal (PrPc), cuja função ainda esta sob investigação, para a forma infecciosa (PrPsc) é a causa de algumas doenças neurodegenerativas em humanos e animais. Vários estudos têm sido realizados e mostram que PrPc pode participar de processos normais como memória, estresse oxidativo, neuritogênese e outros. Portanto, a elucidação dos processos de regulação de sua expressão é importante tanto para definir uma estratégia para controlar a infecção quanto para entender melhor a função fisiológica de PrPc. Este trabalho tem por objetivo avaliar a expressão do gene de PrPc, a partir da regulação da atividade de seu promotor frente a drogas que foram eleitas de acordo com a composição dos elementos de resposta a fatores de transcrição nele contidos. Para isto o promotor foi clonado em um vetor contendo o gene \"reporter\" de luciferase, células C6 e PC-12 foram transfectadas e clones com expressão estável de luciferase foram selecionados. Os resultados dos tratamentos dos clones celulares mostram que éster de forbol (TPA) e AMPc induzem a atividade do promotor de 1,5 a 3 vezes, ácido retinóico (RA) diminui esta atividade em cerca de 50% enquanto que NGF e Dexametasona não têm efeito. A dependência da conformação da cromatina na regulação deste gene também foi testada utilizando-se Tricostatina A (TSA), esta droga foi capaz de aumentar de 10 a 4.000 vezes a atividade do promotor, o que foi seguida tanto pela indução de expressão do RNAm quanto da proteína PrPc. Este efeito parece não ser generalizado a todos os promotores uma vez que esta droga não alterou expressão de GAPDH e de β-actina. Quando TPA e AMPc foram associados à TSA uma potencialização do efeito indutor destas drogas foi observada e a associação de RA e TSA mostrou que RA reduz a indução gerada por TSA. Estes novos dados indicam que a regulação de PrPc é extremamente dependente da conformação da cromatina. / Conversion of the cellular normal prion protein (PrPc), whose physiological function is still under investigation, to an infectious form called prion is the cause of some neurodegenerative diseases. Therefore, the elucidation of PrPc gene regulation is important both to define a strategy to control the infection and to better understand PrPc function. We cloned the rat PrPc gene promoter region into a luciferase reporter vector, transfected C6 and PC-12 cells and isolated clones with stable luciferase expression. The phorbol ester TPA and cAMP induced promoter activity by 1.5 to 3 times, retinoic acid decreased it by 50% while NGF and dexamethasone had no effect. We also tested the dependence of chromatin conformation for PrPc promoter activity using Trichostatin A (TSA), which was able to highly increase not only promoter activity but also PrPc rnRNA and protein leveIs. Moreover, the TSA effect seems to be restricted since any alteration was observed regarding GAPDH (Glyiceraldehyde 3-phosphate desydrogenase) and β-actin expression. When cAMP, TPA or retinoic acid were associated with TSA a potentiation of their primary effects was observed. These new data indicate that PrPc gene regulation is highly dependent on disruption of chromatin fiber assembly what permits assess of trascription factors.
64

Análise molecular por painel de sequenciamento em larga escala em pacientes com diagnóstico clínico de MODY (maturity-onset diabetes of the young) / Molecular analysis by large-scale sequencing panel in patients with clinical diagnosis of MODY (maturity-onset diabetes of the young)

Lílian Araújo Caetano 15 December 2017 (has links)
O diabetes mellitus tipo MODY (maturity-onset diabetes of the young) é caracterizado por defeito na secreção de insulina, herança autossômica dominante, hiperglicemia de início precoce e anticorpos anti-células beta negativos. Até o momento, já foram descritas mutações em 14 genes diferentes. A confirmação do diagnóstico de MODY é feita por estudo genético-molecular, tradicionalmente pelo método de Sanger. Diante da grande heterogeneidade genética de MODY, acrescida da dificuldade de estudo de alguns genes por seu grande tamanho e ausência de hotspots, o sequenciamento em larga escala (SLE) mostra-se promissor para uma análise genética custo-efetiva na suspeita de MODY. No Brasil, existem poucos estudos genéticos de rastreamento de MODY e uma alta prevalência de casos sem mutações identificadas nos genes testados (MODY X). Os objetivos deste estudo foram: 1) analisar simultaneamente todos os genes associados a MODY em uma coorte de pacientes com suspeita clínica, utilizando um painel de SLE; 2) avaliar a patogenicidade das variantes alélicas identificadas de acordo com os critérios da Sociedade Americana de Genética Médica (ACMG). Foram selecionados 80 casos com fenótipo de MODY e análise prévia negativa dos 2 genes mais prevalentes, GCK e HNF1A, pelo método de sequenciamento de Sanger. Estes casos foram analisados pelo método de SLE, direcionado para regiões gênicas alvo, por meio de um painel customizado, com sequenciamento simultâneo de 51 genes nucleares e do genoma mitocondrial. As mutações identificadas foram correlacionadas com o fenótipo e foi realizada a segregação familiar. Uma cobertura de no mínimo 20x foi obtida em 98% das regiões alvo. Dos 80 pacientes avaliados, foram detectadas variantes patogênicas/potencialmente patogênicas em 16 casos (20%), confirmando o diagnóstico genético de MODY. Em 15 dos 80 pacientes foram identificadas 16 variantes de significado incerto, restando ainda 42 casos com diagnóstico molecular não esclarecido. Dos 16 casos confirmados geneticamente: 6 foram no gene GCK, 1 no HNF1A, 1 no HNF4A, 1 no HNF1B, 6 em genes raros associados a MODY (1 no ABCC8, 1 no KCNJ11, 1 no PDX1, 2 no PAX4, 1 no NEUROD1), e 1 no NEUROG3, gene associado a diabetes neonatal. Dentre estas 16 variantes, 2 não haviam sido descritas previamente. As 6 mutações no GCK não tinham sido detectadas na análise prévia por: a) 4 casos falso negativos no sequenciamento por Sanger (3 devido ao fenômeno genético de allelic dropout e 1 por erro na leitura do eletroferograma); b) 2 erros na hipótese clínica inicial do subtipo de MODY (baseada no padrão glicêmico e na resposta terapêutica dos pacientes), levando ao sequenciamento prévio de outro gene. A variante no HNF1A não foi detectada previamente por erro na leitura do eletroferograma (caso falso negativo no Sanger). Uma variante foi identificada no gene HNF4A, que não tinha sido sequenciado anteriormente e apresenta fenótipo semelhante ao do HNF1A. O paciente com variante no HNF1B não apresentava relato prévio de cistos renais ou malformações genito-urinárias e por isso não tinha sido considerada a hipótese clínica de MODY5. Além disso, o SLE confirmou o diagnóstico genético de 6 pacientes com variantes em genes de MODY considerados raros, que habitualmente não são sequenciados na rotina de Sanger e ainda detectou uma variante em um gene de diabetes neonatal (sendo necessário maiores estudos para estabelecer uma relação causal com MODY). Em 13 dos 16 casos índices diagnosticados, os familiares encontravam-se disponíveis para exame genético e a co-segregação foi concordante em 8 famílias. Todos os probandos avaliados apresentavam características clínico-laboratoriais típicas de MODY. Os achados deste estudo mostraram que o SLE foi capaz de aumentar a acurácia no diagnóstico de MODY, permitindo a confirmação molecular de 20% dos casos antes negativos e reduzindo, assim, o número de casos MODY X no Brasil. A abordagem genética por painel de SLE para diagnosticar casos com suspeita clínica de MODY mostrou-se promissora para elucidar as bases genéticas desse tipo de diabetes monogênico / Diabetes mellitus type MODY (maturity-onset diabetes of the young) is characterized by defects in insulin secretion, autosomal dominant inheritance, early onset of hyperglycemia, and negative anti-beta cell antibodies. To date, mutations in 14 genes are associated with MODY. The definitive diagnosis relies on genetic tests, traditionally by Sanger sequencing. However, given the genetic heterogeneity of this condition, added to the difficulty of studying some genes due to their large size and lack of hotspots, large-scale sequencing (LSS) seems promising for cost-effective genetic analysis on suspicion of MODY. In Brazil, there are few cohorts screened for MODY and a high prevalence of MODY X (unclear genetic diagnosis). This study aimed to analyze simultaneously all MODY genes in a cohort of clinically suspected patients using a LSS panel; and to evaluate the pathogenicity of identified allelic variants according to the criteria of the American College of Medical Genetics and Genomics (ACMG). We selected 80 subjects with MODY phenotype and negative previous analysis of the 2 most prevalent genes, GCK and HNF1A, by Sanger sequencing method. These cases were analyzed by LSS method, with simultaneous sequencing of target genes. We designed a customized panel, including 51 nuclear genes and the mitochondrial genome. The identified mutations were correlated to the phenotype and family segregation was evaluated. At least 20x coverage was obtained in 98% of the targeted regions. Of 80 evaluated subjects, pathogenic/probably pathogenic variants were detected in 16 cases (20%), confirming the genetic diagnosis of MODY. In 15 of 80 patients, 16 variants of uncertain significance were identified, remaining 42 cases with unexplained molecular diagnosis. Of the 16 genetically confirmed cases: 6 were in the GCK gene, 1 in HNF1A, 1 in HNF4A, 1 in HNF1B, and 6 in rare genes associated with MODY (1 in ABCC8, 1 in KCNJ11, 1 in PDX1, 2 in PAX4 and 1 in NEUROD1), and 1 in NEUROG3, a gene associated with neonatal diabetes. Of these 16 variants, 2 had not been previously described. Those 6 variants in GCK were not detected in the prior analysis because of: a) 4 false negative cases in Sanger sequencing (allelic dropout had occurred in 3 cases and one variant was overlooked, due to electropherogram interpretation failure); b) 2 errors in the initial clinical hypothesis of the MODY subtype (based on the glycemic pattern and therapeutic response), leading to the prior sequencing of another gene. The variant in HNF1A was not previously identified due to misinterpretation in electropherogram (Sanger false negative case). One variant were detected in the HNF4A gene, not formerly sequenced, and had a similar phenotype to that of HNF1A. The patient with HNF1B variant did not have a previous report of renal cysts or genito-urinary malformations and therefore the clinical hypothesis of MODY5 was not considered. In addition, LSS confirmed the genetic diagnosis of 6 patients harboring variants in MODY genes considered to be rare, which are not usually sequenced in the Sanger routine, and also detected one variant in a neonatal diabetes gene (further studies are necessary to establish a causal relationship with MODY). Relatives were available for genetic testing in 13 of these 16 index cases diagnosed and co-segregation was concordant in 8 families. All probands evaluated showed typical clinical and laboratory characteristics of MODY. These study findings showed that targeted-LSS could increase accuracy in MODY diagnosis, enabling molecular confirmation of 20% of previous negative cases and thus reducing the number of MODY X cases in Brazil. The genetic approach of LSS panel to diagnose cases with clinical suspicion of MODY has shown promise for elucidating the genetic basis of this type of monogenic diabetes
65

Estudo da função dos genes Pumilio de Arabidopsis durante o desenvolvimento vegetal / Study of PUMILIO genes function of Arabidopsis during plant developrnent

Elaine Cristina Favaro 16 April 2007 (has links)
A família PUF é um conjunto de proteínas que se ligam a mRNA regulando sua estabilidade e tradução em processos chave do desenvolvimento. Entre as 25 proteínas de Arabidopsis contendo as repetições PUF, três delas, APUM-I, APUM-2 e APUM-3, apresentam ~90% de identidade e colocalizam temporal e espacialmente nos meristemas apical e axilares de caule, zona de elongação da raiz e no periciclo durante a formação de calos e de raízes laterais, além de estames e polens. Ensaios de RT-PCR mostraram que a relação de expressão entre eles é a mesma em todos os órgãos analisados. Além disso, plantas nocautes apum-1- e apum-2- não apresentam fenótipo alterado, sugerindo redundância funcional. Plantas com a expressão dessas proteínas afetadas por RNA antisense apresentaram folhas cloróticas e reduzidas, raízes mais curtas e menos ramificadas e baixa fertilidade, fenótipo semelhante ao de plantas que superexpressam KRP-2, um inibidor de CDK. O transcrito KRP-2 apresenta um elemento de ligação AraPum no 3\'-UTR sugerindo ser um possível alvo para APUM. Em adição, plantas antisense têm aumento de transcritos KRP-2 em relação a selvagens. Assim, foi proposto que essas proteínas agem coordenando a formação de folhas e raízes pela influência na tradução de KRP-2. A função ancestral das proteínas PUF de manter o ciclo celular em detrimento da diferenciação, parece ser conservada em plantas. / The PUF family is a group of conserved proteins that bind to rnRNAs regulating its stability and translation in key developrnental processes. Among the twenty five Arabidopsis proteins with PUF repeats, we found that three highly similar members, APUM-I, APUM-2 and APUM-3 (~90% identity) and co-localize spatially and temporally in the shoot apical and axillaries meristems, root elongation zone and pericycle during callus and lateral root formation, as well as stamens and pollens. RTPCR assays showed that these proteins have similar expression profiles in ali organs analyzed. Moreover, plant apum-1 and apum-2 knockouts have no detectably altered phenotype, suggesting a functional redundancy between them. Plants in which APUM-I, APUM-2 and APUM-3 expression were reduced through antisense RNA, showed chlorotic and reduced leaves, shorter and less ramificated roots and low fertility. This phenotype is similar to that of plants over-expressing the KRP-2 gene, a CDK inhibitor. An AraPum binding element at 3\'-UTR of the KRP-2 transcript suggests that it may be a possible target for APUM. In addition, in comparison to wild-type plants, antisense plants have increased KRP-2 transcripts levels. We proposed that APUM proteins act by coordinating leaf and root formation by way of influencing KRP-2 transiation. The ancestral function of PUF proteins in the maintenance of the cell cycle, to detriment of differentiation, seems to be conserved in plants.
66

Impact of Bodyweight on Tissue-Specific Folate Status, Genome Wide and Gene-Specific DNA Methylation in Normal Breast Tissues from Premenopausal Women

Frederick, Armina-Lyn 09 July 2018 (has links)
Obesity has reached an epidemic level in the United States. A number of epidemiological studies have established obesity as a critical risk factor for postmenopausal breast cancer (post-BC), whereas a reverse association holds prior to menopause. A significant scientific gap exists in understanding the mechanism(s) underpinning this epidemiological phenomenon, particularly the reverse association between obesity and premenopausal breast cancer (pre-BC). This study aimed to understand how folate metabolism and DNA methylation informs the association between obesity and pre-BC. Fifty normal breast tissue samples were collected from premenopausal women who underwent reduction mammoplasty. We developed and measured the breast tissue folate by a Lactobacillus Casei microbiological assay, and the DNA methylation of LINE-1, a biomarker of genome-wide methylation, and the promoter methylation and gene expression of SFRP1, a tumor suppressor, were measured by pyrosequencing and real-time PCR. We found a high BMI is associated with increased folate level in the mammary tissue, with an increase of 2.65 ng/g of folate per every 5-unit increase of BMI (p < 0.05). The LINE-1 DNA methylation was significantly associated with BMI (p < 0.05), and marginally associated with folate concentration (p = 0.087). For the 8 CpG sites analyzed in the promoter region of the SFRP1 gene, no associations were observed for either BMI or tissue folate (p > 0.05), although a high expression of SFRP1 was observed in subjects with high BMI or high folate (p < 0.05). This study demonstrated that, in premenopausal women, obesity is associated with an increased mammary folate status, genome-wide DNA methylation and SFRP1 gene expression, indicating that the improved folate and epigenetic status is potentially responsible for the reverse association between obesity and pre-BC. More studies are warranted to further understand how obesity mediates pre-BC via altering folate metabolism and DNA methylation.
67

Využití sekvenačních metod nové generace pro objasnění fenotypu podobného CF u pacientů s nejasnou molekulární podstatou onemocnění. / Utilization of new generation sequencing methods to elucidate cystic fibrosis-like phenotype at patients with unclear illness of molecular type.

Matějčková, Iva January 2017 (has links)
Cystic fibrosis (CF) is genetically conditioned, autosomal recessive disease that occurs in the European population with a prevalence of about 1:2500 - 1:1800. In this disease we observe a mutation of the CTFR gene with subsequent fault in chloride channels. Such afflicted individuals usually suffer from chronic respiratory problems, pancreatic insufficiency, high concentration of chloride ions in sweat and obstructive azoospermia. Genetic testing of CFTR gene is indicated in individuals who meet the CF clinical picture and a positive sweat test (increased concentration of chlorides in the sweat). Genetic testing of the CFTR gene is usually done by using commercial kits detecting the most common mutations of the CFTR gene in the Czech Republic. If the testing results are negative, it is further performed an MLPA method that captures the larger deletions and duplications of gene, eventually a sequencing of all exons is. Despite the well-established algorithm of the testing, some patients suffering from symptoms of CF are left without genetic findings. Thanks to development of next generation sequencing, it is possible to make the diagnosis of CF more effective and uncover the variants that were not captured by previous methods.
68

Diet-responsive Gene Networks Rewire Metabolism in the Nematode Caenorhabditis elegans to Provide Robustness against Vitamin B12 Deficiency: A Dissertation

Watson, Emma 17 September 2015 (has links)
Maintaining cellular homeostasis is a complex task, which involves monitoring energy states and essential nutrients, regulating metabolic fluxes to accommodate energy and biomass needs, and preventing buildup of potentially toxic metabolic intermediates and byproducts. Measures aimed at maintaining a healthy cellular economy inherently depend on the composition of nutrients available to the organism through its diet. We sought to delineate links between dietary composition, metabolic gene regulation, and physiological responses in the model organism C. elegans. As a soil-dwelling bacterivore, C. elegans encounters diverse bacterial diets. Compared to a diet of E. coli OP50, a diet of Comamonas aquatica accelerates C. elegans developmental rate, alters egg-laying dynamics and shortens lifespan. These physiological responses are accompanied by gene expression changes. Taking advantage of this natural, genetically tractable predator-prey system, we performed genetic screens i) in C. elegans to identify regulators of diet-responsive genes, and ii) in E. coli and Comamonas to determine dietary factors driving transcriptional responses in C. elegans. We identified a C. elegans transcriptional program that regulates metabolic genes in response to vitamin B12 content in the bacterial diet. Interestingly, several B12- repressed metabolic genes of unknown function are highly activated when B12- dependent propionyl-CoA breakdown is impaired, and inactivation of these genes renders animals sensitive to propionate-induced toxicity. We provide genetic and metabolomic evidence in support of the hypothesis that these genes form a parallel, B12-independent, β-oxidation-like propionate breakdown shunt in C. elegans, similar to the pathway utilized by organisms like yeast and plants that do not use vitamin B12.
69

Vitamin D and TNF-alpha Effects on Adipogenesis and Inflammation in Human Adipocytes

Gray, Brianna 01 January 2011 (has links) (PDF)
Obesity accounts for $168 billion in annual medical expenses and increases the risk of cardiovascular disease, cancer, and type-2 diabetes, three diseases responsible for over 50% of deaths in the United States. It is well established that the pattern of adiposity is an important factor in the relationship with disease risk and that visceral adiposity, which favors hypertrophy (characterized by enlarged cells) is more dangerous than subcutaneous adiposity, which tends to be hyperplastic (characterized by an increase in cell number). Hypertrophy is associated with inflammation and insulin resistance, and hyperplasia (adipogenesis, i.e., the formation of new adipocytes), is associated with improved insulin sensitivity. Tumor necrosis factor-alpha (TNF-alpha) is a potent pro-inflammatory cytokine that activates a nuclear factor-kappa B (NFKB) intracellular pathway that is an important mediator of obesity-associated insulin resistance and increased risk of type-2 diabetes. Interestingly, obesity has been positively associated with both low vitamin D status and elevated levels of TNF-alpha. Our studies focused on examining the influence of the active vitamin D hormone, 1,25-dihydroxyvitamin D, and TNF-alpha on adipogenesis and inflammation in human primary adipocytes and determining whether the balance of these two factors influences the extent to which adipocytes accumulate lipid or express pro-inflammatory cytokines. We found no effect of 1,25-dihydroxyvitamin D on adipogenesis or pro-adipogenic gene expression despite a clear upregulation of a vitamin D responsive gene, 24-hydroxylase, in response to treatment with 1,25-dihydroxyvitamin D. TNF-alpha clearly inhibited adipogenesis and expression of PPAR-gamma and C/EBP-alpha and enhanced expression of the pro-inflammatory cytokines IL-6 and MCP-1, but not IL-8. There was a trend towards a dose-dependent downregulation of MCP-1 by 1,25-dihydroxyvitamin D in three individuals; however, this effect was not statistically significant. While we found no interaction between TNF-alpha and 1,25-dihydroxyvitamin D on adipogenesis, there is a potential anti-inflammatory action of 1,25-dihydroxyvitamin D in human primary adipocytes. Future studies into this potential are warranted in light of the growing obesity epidemic and the interest in finding nutritionally modifiable treatment or prevention strategies to mitigate the negative consequences of obesity.
70

Determining the Effects of Maternal Adiposity on Preterm Neonatal Microbiome and Short Chain Fatty Acid Profiles

James, Dalton, Clark, William A., PhD, Thomas, Kristy L. 01 May 2023 (has links) (PDF)
The gut microbiota and its metabolites have vast impacts on the human digestive system, immune system, and health outcomes. Short chain volatile fatty acids (SCVFAs) present in feces can be representative of the interactions of the microbiota present in the gut. Low microbiota diversity in the human gut is highly associated with obesity and adverse health outcomes. Furthermore, the maternal microbiome has a direct impact on neonatal microbiota through various pathways such as environment, skin flora, breast milk composition, and vaginal secretions. This study is aimed to further understand the associations between various factors (maternal adiposity, gestational time, length of life, delivery mode, and race/ethnicity ) and neonatal microbiome and its metabolites, SCFA. Data (pre-pregnancy BMI, gestational time, length of life at time of sample collection, delivery mode, race/ethnicity, SCVFA profiles, fecal fermentation profiles, and 16s rRNA sequences, n=75) was obtained from 75 mother-infant dyads. Qiagen CLC Genomics Workbench was used to process 16s RNA data, generate quantitative and qualitative measures of alpha and beta diversity, and generate an analysis of the composition of microbiomes for differential abundances. Multiple metrics were analyzed for alpha and beta diversity and no significant differences were found for acetic acid (A), propionic acid (P), butyric acid (B), or APB combined. Shannon diversity index, a measure of Alpha diversity, showed no significant difference between groups in each subset. BMI differences were significant for no c-section vs. c-section and Black vs. White race/ethnicity. There were no significant differences found in PERMANOVA, a measure of beta diversity, or found in differential abundances among the groups.

Page generated in 0.0614 seconds