• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 20
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 122
  • 122
  • 25
  • 24
  • 20
  • 15
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

CHARACTERIZATION OF METHANE-AIR DIFFUSION FLAMES FOR FLAME SYNTHESIS APPLICATION THROUGH OPTICAL DIAGNOSTICS

Diao, Zhaojin 01 January 2018 (has links)
Flame synthesis is a growing field of research aiming at forming new materials and coatings through injection of seed materials into a flame. Accurate prediction of the thermal structure of these flames requires detailed information on the radiative properties and a thorough understanding of the governing combustion processes. The objective of this work is to establish a basic optical diagnostic characterization of different methane-air diffusion flames of different complexity. The basic principles are developed and demonstrated at a rotational symmetric co-flow burner and finally applied to a burner consisting of six clustered microflames which is designed for future flame synthesis work. This work focuses on the demonstration of the optical techniques for characterizing the optical emissions from diffusion flames and of the proposed method for the determination of radiating species properties from these optical measurements. In the co-flow diffusion flame setup, the fuel of methane diluted with nitrogen is provided through an inner tube while the air is applied through an outer duct surrounding the fuel nozzle. Filtered imaging and spectrally resolved measurements of the chemiluminescence of CH* and C2* and of water emission were conducted. A procedure for using the HITRAN database to support the spectroscopic analysis of the water emission was developed. In the six clustered microflames burner setup, the burner consisted of six micro-nozzles arranged in a circle surrounding a central nozzle through which air and TaN seed particles with sizes between 0.3 and 3 μm were injected. Spectrally resolved measurements of the chemiluminescence of CH* and C2* were conducted for temperature measurements. Imaging results obtained from a spectral integration of the molecular emission were compared to results from Japanese collaborators who applied a tomographic analysis method to filtered emission measurements of CH* emission which can yield spatially resolved three dimensional mapping of the flame front. The analysis of the spatial distribution of the integrated band emission of CH* and C2* showed that the emission of both species is generated at the same locations in the flame which are the thin flame sheets shown in the tomography results of CH*. The ratio of the C2* and the CH* emission from the emission spectroscopy measurements was used to determine a local equivalence ratio through empirically derived correlations for premixed flames reported in literature. Rotational and vibrational temperature distributions of CH* and C2* radicals throughout the entire flame were determined from the spectrally resolved emission from CH* and C2*. The temperatures of TaN seed particles were characterized using VIS-NIR emission spectra while varying fuel-air flow rates. The temperature profiles of the particles at various heights above the base of the central nozzle, obtained by their VIS-NIR continuum emission, showed a well-defined constant temperature region that extended well beyond the actual flame front and changed as fuel and oxidizer flow rates were varied. The results demonstrate the ability to control the duration to which seed particles are subjected to high temperature reactions by adjusting fuel and oxidizer flow rates in the clustered microflames burner.
62

Gas Production in Distant Comets

Gunnarsson, Marcus January 2002 (has links)
<p>Molecular spectroscopy at radio wavelengths is a tool well suited for studying the composition and outgassing kinematics of cometary comae. This is particularly true for distant comets, i.e. comets at heliocentric distances greater than a few AU, where the excitation of molecules is inefficient other than for rotational energy levels. At these distances, water sublimation is inefficient, and cometary activity is dominated by outgassing of carbon monoxide.</p><p>An observing campaign is presented, where the millimeter-wave emission from CO in comet 29P/Schwassmann-Wachmann 1 has been studied in detail using the Swedish-ESO Submillimetre Telescope (SEST). Coma models have been used to analyse the spectra. The production of CO is found to have two separate sources, one releasing CO gas on the nuclear dayside, and one extended source, where CO is produced from coma material, proposed to be icy dust grains.</p><p>Radio observations of many molecules in comet C/1995 O1 (Hale-Bopp) have been carried out in a long-term international effort using several radio telescopes. An overview of the results is presented, describing the evolution of the gas production as the comet passed through the inner Solar system. Spectra recorded using the SEST, primarily of CO, for heliocentric distances from 3 to 11 AU are analysed in detail, also using coma models.</p><p>The concept of icy grains constituting the extended source discovered in comet 29P/Schwassmann-Wachmann 1 is examined by theoretical modelling of micrometre-sized ice/dust particles at 6 AU from the Sun. It is shown that that such grains can release their content of volatiles on timescales similar to that found for the extended source.</p>
63

Synchrotron radiation induced fluorescence spectroscopy of gas phase molecules

Álvarez Ruiz, Jesús January 2004 (has links)
A new experimental set-up for gas phase fluorescence studies using synchrotron radiation has been designed and constructed to perform simultaneously total and dispersed fluorescence measurements. Neutral photodissociation of CO has been investigated after excitation with 19-26 eV photons. Fluorescence from 3p 3P, 3p 3S and 3p 1D excited states in carbon was recorded and interpreted by ab initio calculations. The population and dissociation of states belonging to the C and D Rydberg series in CO seem to explain the production of the observed triplet states but not the 3p 1D state. Neutral photodissociation of NO is reported in the 17-26 eV energy range. No known molecular states can account for the collected data. New information regarding the precursor states of the observed neutral dissociation is provided by ab initio calculations. Autoionization of superexcited states in molecular nitrogen is evidenced by strong deviations of the Franck-Condon ratio in the fluorescence of the N2+ B state. Ab initio calculations predict the existence of autoionizing-excited states that may account for some of the observed structures in the 20-46 eV energy range. Selective molecular fluorescence from the npó1Óu+ and npð 1Ðu (n=3-7) Rydberg levels to the E,F 1Óg+ state in H2 was recorded and rotationally analyzed. Vibrational levels of the E,F 1Óg+ state (vEF =0,1,3,6-10) are determined. The predissociation of npð 1Ð+ levels is observed in agreement with the literature. Fragmentation of SF6 was investigated after excitation with 25–80 eV photons. Dispersed fluorescence measurements reveal the emission of S, S+, F and F+ excited atoms. These fragments are produced after single, double and triple excitations as well as direct ionizations and shake-ups in SF6. Photoabsorption and fluorescence yield have been measured in SF5CF3 using 10-30eV photons. The photoabsorption spectrum can be explained in terms of its similarities to those of the SF6 and CF4 molecules. The dispersed and un-dispersed fluorescence resemble those of the CF3X family. Several features suggest the migration of an F atom across the S-C bond that fragments the molecule producing excited CF4. Doubly excited states of H2 have been investigated in the range of 26-60 eV by monitoring Balmer á emission. The experimental data show the already known emission correlated with the fragmentation of the Q1 and Q2 states, and new features which could be attributed to dissociative photoionization and higher lying doubly excited states Qn (n&gt;2) of the hydrogen molecule
64

Gas Production in Distant Comets

Gunnarsson, Marcus January 2002 (has links)
Molecular spectroscopy at radio wavelengths is a tool well suited for studying the composition and outgassing kinematics of cometary comae. This is particularly true for distant comets, i.e. comets at heliocentric distances greater than a few AU, where the excitation of molecules is inefficient other than for rotational energy levels. At these distances, water sublimation is inefficient, and cometary activity is dominated by outgassing of carbon monoxide. An observing campaign is presented, where the millimeter-wave emission from CO in comet 29P/Schwassmann-Wachmann 1 has been studied in detail using the Swedish-ESO Submillimetre Telescope (SEST). Coma models have been used to analyse the spectra. The production of CO is found to have two separate sources, one releasing CO gas on the nuclear dayside, and one extended source, where CO is produced from coma material, proposed to be icy dust grains. Radio observations of many molecules in comet C/1995 O1 (Hale-Bopp) have been carried out in a long-term international effort using several radio telescopes. An overview of the results is presented, describing the evolution of the gas production as the comet passed through the inner Solar system. Spectra recorded using the SEST, primarily of CO, for heliocentric distances from 3 to 11 AU are analysed in detail, also using coma models. The concept of icy grains constituting the extended source discovered in comet 29P/Schwassmann-Wachmann 1 is examined by theoretical modelling of micrometre-sized ice/dust particles at 6 AU from the Sun. It is shown that that such grains can release their content of volatiles on timescales similar to that found for the extended source.
65

A Herschel/HIFI study of Water in Two Intermediate-Mass Star Forming Regions: Vela IRS 17 and Vela IRS 19

Tisi, Samuel January 2013 (has links)
While the single core accretion model for low mass star formation is well developed, it cannot simply be extended into the high mass star formation regime where clustered star formation dominates. The study of intermediate-mass star formation should provide us with insights into how the process of star formation changes for high mass stars. In this thesis observations of H2O line emission from two intermediate-mass candidate Young Stellar Objects (YSOs) made using the HIFI instrument aboard the Herschel Space Observatory are presented. Modelling of molecular line emission using the radiative transfer code RATRAN is used to put constraints on kinematics and the abundance of water throughout the region by modelling the observed water lines after decomposing them into separate Gaussian components. The medium component of the 752 GHz line from Vela IRS 17 was modelled by using a turbulent velocity of 1.7 km s^-1 and an outer abundance of 6x10^-8. The narrow component of the 752 GHz line from Vela IRS 19 could be modelled using a turbulent velocity of 0.6 km s^-1 and an outer abundance of 6x 10^-8, while the medium component required an outer abundance of 4 x 10^-7 with a turbulent velocity of 2.5 km s^-1. The constraints on water abundance in these star-forming regions are to be used along with studies of water in low and high mass star-forming regions in the effort to improve our understanding of star formation across the entire stellar mass spectrum.
66

Synchrotron radiation induced fluorescence spectroscopy of gas phase molecules

Álvarez Ruiz, Jesús January 2004 (has links)
<p>A new experimental set-up for gas phase fluorescence studies using synchrotron radiation has been designed and constructed to perform simultaneously total and dispersed fluorescence measurements. </p><p>Neutral photodissociation of CO has been investigated after excitation with 19-26 eV photons. Fluorescence from 3p 3P, 3p 3S and 3p 1D excited states in carbon was recorded and interpreted by ab initio calculations. The population and dissociation of states belonging to the C and D Rydberg series in CO seem to explain the production of the observed triplet states but not the 3p 1D state. </p><p>Neutral photodissociation of NO is reported in the 17-26 eV energy range. No known molecular states can account for the collected data. New information regarding the precursor states of the observed neutral dissociation is provided by ab initio calculations. </p><p>Autoionization of superexcited states in molecular nitrogen is evidenced by strong deviations of the Franck-Condon ratio in the fluorescence of the N2+ B state. Ab initio calculations predict the existence of autoionizing-excited states that may account for some of the observed structures in the 20-46 eV energy range. </p><p>Selective molecular fluorescence from the npó1Óu+ and npð 1Ðu (n=3-7) Rydberg levels to the E,F 1Óg+ state in H2 was recorded and rotationally analyzed. Vibrational levels of the E,F 1Óg+ state (vEF =0,1,3,6-10) are determined. The predissociation of npð 1Ð+ levels is observed in agreement with the literature. </p><p>Fragmentation of SF6 was investigated after excitation with 25–80 eV photons. Dispersed fluorescence measurements reveal the emission of S, S+, F and F+ excited atoms. These fragments are produced after single, double and triple excitations as well as direct ionizations and shake-ups in SF6. </p><p>Photoabsorption and fluorescence yield have been measured in SF5CF3 using 10-30eV photons. The photoabsorption spectrum can be explained in terms of its similarities to those of the SF6 and CF4 molecules. The dispersed and un-dispersed fluorescence resemble those of the CF3X family. Several features suggest the migration of an F atom across the S-C bond that fragments the molecule producing excited CF4. </p><p>Doubly excited states of H2 have been investigated in the range of 26-60 eV by monitoring Balmer á emission. The experimental data show the already known emission correlated with the fragmentation of the Q1 and Q2 states, and new features which could be attributed to dissociative photoionization and higher lying doubly excited states Qn (n>2) of the hydrogen molecule</p>
67

Dynamics of gas-surface reactions on Al(111) and Si(100) /

Neuburger, Monica Louise. January 2002 (has links)
Thesis (Ph. D.)--University of California, San Diego and San Diego State University, 2002. / Vita. Includes bibliographical references.
68

Spectroscopic Studies of Pyridine and its Isotopomer, 2-Fluoro- and 3-Fluoropyridine, 1,3-Butadiene and Its Isotopomers

Boopalachandran, Praveenkumar 2011 December 1900 (has links)
The infrared, Raman and ultraviolet spectra of pyridine-d0 and pyridine-d5 were recorded and assigned with a focus on the low-frequency vibrational modes in the S1(n,pi*) electronic excited state. An energy map for the low-frequency modes was constructed and the data for the v18 mode allowed a highly anharmonic one-dimensional potential energy function to be determined for the S1 excited state. In this S1(n,pi*) state, pyridine is quasi-planar and very floppy with a barrier to planarity of 3 cm^-1. The infrared, Raman and ultraviolet spectra of 2-fluoropyridine (2FPy) and 3-fluoropyridine (3FPy) have been collected and assigned. For 2FPy about 150 bands were observed for the transitions to the vibronic levels of the S(pi, pi*) state at 38,030.4 cm^-1. For 3FPy more than a hundred absorption bands associated with the S(n,pi*) state at 35,051.7 cm^-1 and about forty broad bands associated with the S(pi, pi*) state at 37,339 cm^-1 were observed. The experimental work was complemented by ab initio calculations and these also provided calculated structures for 2FPy, 3FPy, and pyridine. They showed that the fluorine atom on the ring participates in the pi bonding. The gas-phase Raman spectra of 1,3-butadiene and its 2,3-d2, 1,1,4,4-d4, and d6 isotopomers have been recorded with high sensitivity in the region below 350 cm-1, in order to investigate the internal rotation (torsional) vibration. The data for all the isotopomers were then fit using a one-dimensional potential energy function of the form V = (1/2)Sigma(Vn(1-cos (phi))). The energy difference between trans and gauche forms was determined to be about 1030 cm^-1 (2.94 kcal/mol), and the barrier between the two equivalent gauche forms to be about 180 cm^-1 (0.51 kcal/mol), which agrees well with high-level ab initio calculations. The results from an alternative set of assignments also fits the data quite well are also presented. Combination and hot band series involving the v13 torsional vibration of the trans rotamer were observed for each of the butadiene isotopomers. In addition, the high signal to noise of the Raman spectra made it possible to detect several dozen bands of the gauche rotor which makes up only about 2% of the molecules at ambient temperature.
69

A Herschel/HIFI study of Water in Two Intermediate-Mass Star Forming Regions: Vela IRS 17 and Vela IRS 19

Tisi, Samuel January 2013 (has links)
While the single core accretion model for low mass star formation is well developed, it cannot simply be extended into the high mass star formation regime where clustered star formation dominates. The study of intermediate-mass star formation should provide us with insights into how the process of star formation changes for high mass stars. In this thesis observations of H2O line emission from two intermediate-mass candidate Young Stellar Objects (YSOs) made using the HIFI instrument aboard the Herschel Space Observatory are presented. Modelling of molecular line emission using the radiative transfer code RATRAN is used to put constraints on kinematics and the abundance of water throughout the region by modelling the observed water lines after decomposing them into separate Gaussian components. The medium component of the 752 GHz line from Vela IRS 17 was modelled by using a turbulent velocity of 1.7 km s^-1 and an outer abundance of 6x10^-8. The narrow component of the 752 GHz line from Vela IRS 19 could be modelled using a turbulent velocity of 0.6 km s^-1 and an outer abundance of 6x 10^-8, while the medium component required an outer abundance of 4 x 10^-7 with a turbulent velocity of 2.5 km s^-1. The constraints on water abundance in these star-forming regions are to be used along with studies of water in low and high mass star-forming regions in the effort to improve our understanding of star formation across the entire stellar mass spectrum.
70

Single molecule force spectroscopy studies of DNA binding and chaperone proteins a dissertation /

Wang, Fei, January 1900 (has links)
Thesis (Ph. D.)--Northeastern University, 2008. / Title from title page (viewed March 3, 2009). Graduate School of Arts and Sciences, Dept. of Physics. Includes bibliographical references (p. 133-155).

Page generated in 0.103 seconds