• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Development and Evaluation of a Virtual Classroom and Teaching Contents for Bernoulli Stochastics / Design, Entwicklung und Evaluierung einer virtuellen Lernumgebung und des Lehrstoffs für die Bernoulli Stochastik

Zhai, Xiaomin January 2010 (has links) (PDF)
This thesis is devoted to Bernoulli Stochastics, which was initiated by Jakob Bernoulli more than 300 years ago by his master piece 'Ars conjectandi', which can be translated as 'Science of Prediction'. Thus, Jakob Bernoulli's Stochastics focus on prediction in contrast to the later emerging disciplines probability theory, statistics and mathematical statistics. Only recently Jakob Bernoulli's focus was taken up von Collani, who developed a unified theory of uncertainty aiming at making reliable and accurate predictions. In this thesis, teaching material as well as a virtual classroom are developed for fostering ideas and techniques initiated by Jakob Bernoulli and elaborated by Elart von Collani. The thesis is part of an extensively construed project called 'Stochastikon' aiming at introducing Bernoulli Stochastics as a unified science of prediction and measurement under uncertainty. This ambitious aim shall be reached by the development of an internet-based comprehensive system offering the science of Bernoulli Stochastics on any level of application. So far it is planned that the 'Stochastikon' system (http://www.stochastikon.com/) will consist of five subsystems. Two of them are developed and introduced in this thesis. The first one is the e-learning programme 'Stochastikon Magister' and the second one 'Stochastikon Graphics' that provides the entire Stochastikon system with graphical illustrations. E-learning is the outcome of merging education and internet techniques. E-learning is characterized by the facts that teaching and learning are independent of place and time and of the availability of specially trained teachers. Knowledge offering as well as knowledge transferring are realized by using modern information technologies. Nowadays more and more e-learning environments are based on the internet as the primary tool for communication and presentation. E-learning presentation tools are for instance text-files, pictures, graphics, audio and videos, which can be networked with each other. There could be no limit as to the access to teaching contents. Moreover, the students can adapt the speed of learning to their individual abilities. E-learning is particularly appropriate for newly arising scientific and technical disciplines, which generally cannot be presented by traditional learning methods sufficiently well, because neither trained teachers nor textbooks are available. The first part of this dissertation introduces the state of the art of e-learning in statistics, since statistics and Bernoulli Stochastics are both based on probability theory and exhibit many similar features. Since Stochastikon Magister is the first e-learning programme for Bernoulli Stochastics, the educational statistics systems is selected for the purpose of comparison and evaluation. This makes sense as both disciplines are an attempt to handle uncertainty and use methods that often can be directly compared. The second part of this dissertation is devoted to Bernoulli Stochastics. This part aims at outlining the content of two courses, which have been developed for the anticipated e-learning programme Stochastikon Magister in order to show the difficulties in teaching, understanding and applying Bernoulli Stochastics. The third part discusses the realization of the e-learning programme Stochastikon Magister, its design and implementation, which aims at offering a systematic learning of principles and techniques developed in Bernoulli Stochastics. The resulting e-learning programme differs from the commonly developed e-learning programmes as it is an attempt to provide a virtual classroom that simulates all the functions of real classroom teaching. This is in general not necessary, since most of the e-learning programmes aim at supporting existing classroom teaching. The forth part presents two empirical evaluations of Stochastikon Magister. The evaluations are performed by means of comparisons between traditional classroom learning in statistics and e-learning of Bernoulli Stochastics. The aim is to assess the usability and learnability of Stochastikon Magister. Finally, the fifth part of this dissertation is added as an appendix. It refers to Stochastikon Graphics, the fifth component of the entire Stochastikon system. Stochastikon Graphics provides the other components with graphical representations of concepts, procedures and results obtained or used in the framework of Bernoulli Stochastics. The primary aim of this thesis is the development of an appropriate software for the anticipated e-learning environment meant for Bernoulli Stochastics, while the preparation of the necessary teaching material constitutes only a secondary aim used for demonstrating the functionality of the e-learning platform and the scientific novelty of Bernoulli Stochastics. To this end, a first version of two teaching courses are developed, implemented and offered on-line in order to collect practical experiences. The two courses, which were developed as part of this projects are submitted as a supplement to this dissertation. For the time being the first experience with the e-learning programme Stochastikon Magister has been made. Students of different faculties of the University of Würzburg, as well as researchers and engineers, who are involved in the Stochastikon project have obtained access to Stochastikon Magister via internet. They have registered for Stochastikon Magister and participated in the course programme. This thesis reports on two assessments of these first experiences and the results will lead to further improvements with respect to content and organization of Stochastikon Magister. / Diese Dissertation ist der Bernoulli Stochastik gewidmet, die von Jakob Bernoulli von mehr als 300 Jahren begonnen wurde und zwar mit seinem Hauptwerk 'Ars conjectandi', was mit 'Wissenschaft der Vorhersagen' übersetzt werden kann. Im Zentrum von Jakob Bernoullis Stochastik stehen Vorhersagen im Gegensatz zu den später entstandenen Disziplinen Wahrscheinlichkeitstheorie, Statistik und Mathematische Statistik. Vor Kurzem wurde Jakob Bernoullis Vorschlag von Elart von Collani aufgegriffen, der daraus eine einheitliche Theorie der Unsicherheit entwickelte mit dem Ziel zuverlässige und genaue Vorhersagen zu erlauben. In dieser Dissertation wird eine virtuelle Lernumgebung und der entsprechende Lehrstoff für die Ideen und Resultate von Jakob Bernoulli und Elart von Collani entwickelt. Die Dissertation ist Teil des groß angelegten Projekts 'Stochastikon' dessen Ziel es ist, die Bernoulli Stochastik als allgemeine Wissenschaft der Vorhersage und des Messens unter Unsicherheit zu etablieren. Dieses ehrgeizige Ziel soll mit Hilfe eines umfassenden Internet-Systems erreicht werden, das die Bernoulli Stochastik für alle Gebiete der Anwendung zur Verfügung stellt. Zur Zeit besteht das Stochastikon-System (http://www.stochastikon.com/) aus fünf Teilsystemen. Zwei dieser Systeme sind im Rahmen dieser Dissertation entstanden. Das erste ist das E-Learning Programm 'Stochastikon Magister' und das zweite heißt 'Stochastikon Graphics'. Es beliefert das gesamte Stochastikon Systems mit grafischen Darstellungen. E-Learning entsteht durch Anwendung moderner Informationstechnologien auf die Ausbildung. E-Learning zeichnet sich dadurch aus, dass Lehren und Lernen unabhängig von Ort und Zeit und vom Vorhandensein von speziell ausgebildeten Lehrern ist. Das Angebot und Übermittlung von Wissen erfolgt mit Hilfe der modernen Informationstechnologien. Heutzutage basieren immer mehr E-Learning Programme auf dem Internet, das zum wichtigstes Mittel der Wissensvermittlung und Wissensdarstellung geworden ist. Für die Darstellung des Lehrstoffes im Rahmen des E-Learning existieren kaum Grenzen und darüber hinaus können die Studenten die Lerngeschwindigkeit ihren eigenen Bedürfnissen anpassen. E-Learning ist dabei besonders geeignet für neue wissenschaftliche und technische Disziplinen, die mangels Lehrer und Lehrmaterialien nicht mit Hilfe traditioneller Lernmethoden unterrichtet werden können. Im ersten Teil der Dissertation wird der State of the Art im Bereich der E-Learning Porgramme im Fach Statistik dargestellt, da Statistik und Bernoulli Stochastik beide auf der Wahrscheinlichkeitstheorie basieren und daher viele Ähnlichkeiten aufweisen. Stochastikon Magister ist das erste E-Learning Programm im Rahmen der Bernoulli Stochastik und daher werden zum Vergleich und zur Evaluierung Lehrsysteme aus der Statistik verwendet. Dies ist schon deshalb sinnvoll, weil beide Diszipline sich mit der Unsicherheit beschäftigen und in vielen Fällen die entsprechenden Methoden direkt miteinander verglichen werden können. Der zweite Teil der Dissertation enthält eine kurze Einführung in die Bernoulli Stochastik und zwar anhand von zwei Kursen die im Rahmen der Dissertation entwickelt wurden. Dieser Teil soll die Schwierigkeiten veranschaulichen, die beim Lehren, Verstehen und Anwenden der Bernoulli Stochastik überwunden werden müssen. Im dritten Teil der Dissertation wird die Realisierung des E-Learning Programms Stochastikon Magister diskutiert. Charakteristisch für das E-Learning Programm Stochastikon Magister ist der Versuch ein vollständiges virtuelles Klassenzimmer zu verwirklichen in dem alle Funktionen des traditionellen Schulunterrichts simuliert werden. Dies ist im Allgemeinen nicht notwendig, da das Ziel der meisten E-Learning Programme nur aus der Unterstützung eines traditionellen Lehrprogrammes besteht. Der vierte Teil der Dissertation besteht aus einer empirischen Evaluation des Stochastikon Magisters. Dabei wird eine traditionelle Statistikausbildung mit der Ausbildung in Bernoulli Stochastik auf der Grundlage des E-Learning Programms Stochastikon Magister verglichen. Ziel ist es die Bedienungsfreundlichkeit des Magisters und die Erlernbarkeit der Bernoulli Stochastik nachzuweisen. Der fünfte Teil schließlich besteht aus einem Anhang, der die fünfte Komponente des Stochastik Systems (Stochasticon Graphics) beschreibt. Stochasticon Graphics sorgt dafür, dass alle übrigen Komponenten mit graphischen Abbildungen der Konzepte, Verfahren und Resultate versorgt werden. Das Hauptziel dieser Dissertation ist die Entwicklung geeigneter Software für eine E-Learning-Umgebung für das Fach Bernoulli Stochastik. Die Bereitstellung des entsprechenden Lehrstoff stellt dabei ein sekundäres, aber notwendiges Ziel dar. Notwendig um vor allem die Funktionalität der E-Learning Plattform und die wissenschaftliche Neuheit der Bernoulli Stochastik demonstrieren zu können. Dazu wurden erste Versionen von zwei Kursen entwickelt und on-line angeboten, um Erfahrungen zu sammeln. Die beiden Kurse, die im Rahmen dieser Dissertation entwickelt worden sind, sind als Anhang der Dissertation beigefügt. Zur Zeit werden die ersten Erfahrungen mit dem E-Learning Programm Stochastikon Magister gemacht. Studenten verschiedener Fakultäten der Universität Würzburg aber auch Wissenschaftler und Techniker, die im Rahmen des Stochastikon Projekts mitarbeiten, haben die Kurse belegt und absolviert. Die Ergebnisse dieser ersten Erfahrungen werden in der Dissertation dargestellt und sie werden zu weiteren Verbesserungen des E-Learning Programms führen.
2

The Cumulant Method / Die Kumulantenmethode

Seeger, Steffen 24 September 2003 (has links) (PDF)
In dieser Arbeit wird eine neue Methode zur Reduktion der Boltzmann-Gleichung auf ein System partieller Differentialgleichungen diskutiert. Nach einer kurzen Einführung in die kinetische Theorie einer Mischung inerter Gase wird ein Überblick in die aus der Literatur bekannten Momentenmethoden gegeben. Der anschließend vorgestellten Kumulantenmethode liegt die Annahme zugrunde, daß durch Stoßprozesse in einem Gas Korrelationen höherer Ordnung schneller abgebaut werden als solche niedrigerer Ordnung. Basierend auf dieser Annahme werden die Bewegungsgleichungen für die Kumulanten und die Produktionsterme der resultierenden Bilanzgleichungen für eine Mischung inerter Maxwell-Gase berechnet. Die Untersuchung der Relaxation zum Gleichgewicht erlaubt den Bezug zu bekannten Modellen der Kontinuumsmechanik und untermauert die Gültigkeit der Annahme für die Begründung des o.g. Ansatzes in diesem Fall. Im zweiten Teil der Arbeit werden die Ergebnisse numerischer Untersuchungen vorgestellt, wobei Simulationen mit verschiedenen Randbedingungen für Couette- und Poiseulle- Strömungen durchgeführt wurden. Es werden verschiedene Eigenschaften von Modellen für verdünnte Gase als auch des Navier-Stokes-Modells beobachtet. Dabei ist jedoch eine sehr starke Abhängigkeit von den angewendeten Randbedingungen festzustellen. Abschließend werden Momentenmethoden als eine besondere Form von Diskretisierungen der Boltzmann-Gleichung nach der Methode der gewichteten Residuen diskutiert, was einen Ausblick auf zukünftige Arbeiten erlaubt.
3

The Cumulant Method

Seeger, Steffen 09 September 2003 (has links)
In dieser Arbeit wird eine neue Methode zur Reduktion der Boltzmann-Gleichung auf ein System partieller Differentialgleichungen diskutiert. Nach einer kurzen Einführung in die kinetische Theorie einer Mischung inerter Gase wird ein Überblick in die aus der Literatur bekannten Momentenmethoden gegeben. Der anschließend vorgestellten Kumulantenmethode liegt die Annahme zugrunde, daß durch Stoßprozesse in einem Gas Korrelationen höherer Ordnung schneller abgebaut werden als solche niedrigerer Ordnung. Basierend auf dieser Annahme werden die Bewegungsgleichungen für die Kumulanten und die Produktionsterme der resultierenden Bilanzgleichungen für eine Mischung inerter Maxwell-Gase berechnet. Die Untersuchung der Relaxation zum Gleichgewicht erlaubt den Bezug zu bekannten Modellen der Kontinuumsmechanik und untermauert die Gültigkeit der Annahme für die Begründung des o.g. Ansatzes in diesem Fall. Im zweiten Teil der Arbeit werden die Ergebnisse numerischer Untersuchungen vorgestellt, wobei Simulationen mit verschiedenen Randbedingungen für Couette- und Poiseulle- Strömungen durchgeführt wurden. Es werden verschiedene Eigenschaften von Modellen für verdünnte Gase als auch des Navier-Stokes-Modells beobachtet. Dabei ist jedoch eine sehr starke Abhängigkeit von den angewendeten Randbedingungen festzustellen. Abschließend werden Momentenmethoden als eine besondere Form von Diskretisierungen der Boltzmann-Gleichung nach der Methode der gewichteten Residuen diskutiert, was einen Ausblick auf zukünftige Arbeiten erlaubt.

Page generated in 0.0984 seconds