• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 38
  • 21
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 179
  • 179
  • 26
  • 26
  • 25
  • 23
  • 21
  • 15
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
132

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
133

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
134

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
135

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
136

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
137

Increased expression of proteins in CHO cells by identification of signal peptides for improved secretion of translated proteins

Strannermyr, Malin January 2018 (has links)
Main purpose of this study was to increase protein expression in Chinese hamster ovary (CHO) cells by improving protein secretion of translated proteins. The goal was to find signal peptides from the screening of signal peptide libraries for improvement of protein secretion using a CHO-cell express selection system. Biopharmaceutical products, proteins such as monoclonal antibodies (mAbs), are most commonly produced using mammalian expression systems such as the expression in CHO cells. The posttranslational modifications of the proteins being expressed in CHO cells are similar to the expressional modifications in human cells, why the CHO cells are suitable for production of proteins used for human therapy. The expression of proteins in the cell is a complex mechanism, fundamentally depending on the DNA sequences in the cell nucleus. Secretion of translated proteins has been showed to be a bottleneck when improving expression. Secretion is initiated by the signal peptide, a n-terminal prolongation of the protein that is recognized by a signal recognition particle (SRP) when being translated by the ribosome. The sequence and structure of the signal peptide has been proved to affect secretion and altering the signal peptide could improve secretion even when changing signal peptide between different species. Designing variants of the signal peptides and analyzing protein expression might lead to improvements of the construct design and more protein produced from the cells, which would save time, money and material for the producer. To construct plasmids containing the gene of interest (GOI) and different signal peptides, several gene cloning methods were used. The plasmids were amplified using Escherichia coli (E. coli) transformation. The constructs were expressed by transfection into the CHO cell genome, and expression were analyzed using flow cytometry. When analyzing expression of a Fc-fusion protein with 5 different signal peptides, the signal peptide Azurocidin is the one showing highest expression levels in this study. In addition, IgG kapa and Albumin signal peptides did not show as high protein expression levels, even if they were better than the L1d and H5b signal peptides. Since signal peptides are exchangeable between proteins and species, it might be that Azurocidin is improving secretion and protein expression with other proteins than Fc-fusion proteins which would be an interesting aspect for further studies. When altering signal peptides with library sequences, the experimental challenges were crucial for the protein expression results and due to these issues, no library sequence could be seen to conquer others when it comes to protein expression levels. Transfection and cultivation procedures needs to be studied and improved before being able to draw conclusions about which signal peptide library sequences that might improve secretion and increase the protein expression.
138

Proex C para o diagnóstico de lesões intra-epiteliais no colo do útero

Pias, Andressa de Azambuja January 2012 (has links)
Foi realizada uma análise quantitativa sistemática da literatura para verificar a acurácia do biomarcador ProEx C em pacientes com ASC-US, ASCH e SIL. Metodologia: A pesquisa foi realizada no MEDLINE (PubMed e OVID), EMBASE, LILACS, IBECS, BIOSIS, Web of Science, SCOPUS, desde 1966 até Novembro de 2011. Esta revisão esteve centrada em estudos que cumpriram as três condições para a seleção do estudo, que incluem teste de Papanicolaou, teste de triagem ProEx C e histopatologia como o teste de referência. Resultados: Cinco estudos, incluindo 713 mulheres, foram analisados. Das biopsias positivas, 83% (355/429) foram positivas para ProEx C, enquanto 14% (41/284) das biópsias negativas foram positivas para ProEx C. A sensibilidade combinada foi de 83% (95% IC, 79-87) e especificidade foi de 85% (95% IC, 80-89) usando o soaftware Meta-Disc. Para lesão cervical vs biópsia positiva ou negativa, a área sob a curva (AUC) foi de 0,90 com valor do ponto Q * de 0,84. Conclusão: nossos dados concordam com a hipótese de que ProEx C representa um evento precoce na carcinogênese cervical e que poderiam estar associados com a iniciação e progressão de lesões cervicais e, se expressados nos exames estudados podem revelar maior acurácia diagnóstica destes exames. / Undertook a quantitative systematic review of the literature to ascertain the accuracy of the biomarker ProEx C in patients with ASC-US, ASC-H and SIL. Methods: A comprehensive search of the MEDLINE (PubMed and OVID interface), EMBASE, LILACS, IBECS, BIOSIS, Web of Science, SCOPUS, index from 1966 to November 2011. This review focused on studies that fulfill the three mandatory conditions for study selection that include Pap Test, triage testing ProEx C and histopathology like the reference test. Results: Five studies, including 713 women, were analyzed. 83% (355/429) of positive biopsy were positive for ProEx C activity, while 14% (41/284) of the negative biopsy were positive for ProEx C activity. Pooled sensitivity was 83% (95% IC, 79 to 87) and specificity was 85% (95% IC, 80-89) using software Meta-Disc. For cervical lesion vs positive or negative biopsy, the area under the curve (AUC) was 0.90 with Q* point value of 0.84. Conclusion: our data agree with the hypothesis that ProEx C represents an early event in cervical carcinogenesis that could be associated with the initiation and progression of cervical lesions and is expressed in the studied tests may reveal greater diagnostic accuracy of these tests.
139

Proex C para o diagnóstico de lesões intra-epiteliais no colo do útero

Pias, Andressa de Azambuja January 2012 (has links)
Foi realizada uma análise quantitativa sistemática da literatura para verificar a acurácia do biomarcador ProEx C em pacientes com ASC-US, ASCH e SIL. Metodologia: A pesquisa foi realizada no MEDLINE (PubMed e OVID), EMBASE, LILACS, IBECS, BIOSIS, Web of Science, SCOPUS, desde 1966 até Novembro de 2011. Esta revisão esteve centrada em estudos que cumpriram as três condições para a seleção do estudo, que incluem teste de Papanicolaou, teste de triagem ProEx C e histopatologia como o teste de referência. Resultados: Cinco estudos, incluindo 713 mulheres, foram analisados. Das biopsias positivas, 83% (355/429) foram positivas para ProEx C, enquanto 14% (41/284) das biópsias negativas foram positivas para ProEx C. A sensibilidade combinada foi de 83% (95% IC, 79-87) e especificidade foi de 85% (95% IC, 80-89) usando o soaftware Meta-Disc. Para lesão cervical vs biópsia positiva ou negativa, a área sob a curva (AUC) foi de 0,90 com valor do ponto Q * de 0,84. Conclusão: nossos dados concordam com a hipótese de que ProEx C representa um evento precoce na carcinogênese cervical e que poderiam estar associados com a iniciação e progressão de lesões cervicais e, se expressados nos exames estudados podem revelar maior acurácia diagnóstica destes exames. / Undertook a quantitative systematic review of the literature to ascertain the accuracy of the biomarker ProEx C in patients with ASC-US, ASC-H and SIL. Methods: A comprehensive search of the MEDLINE (PubMed and OVID interface), EMBASE, LILACS, IBECS, BIOSIS, Web of Science, SCOPUS, index from 1966 to November 2011. This review focused on studies that fulfill the three mandatory conditions for study selection that include Pap Test, triage testing ProEx C and histopathology like the reference test. Results: Five studies, including 713 women, were analyzed. 83% (355/429) of positive biopsy were positive for ProEx C activity, while 14% (41/284) of the negative biopsy were positive for ProEx C activity. Pooled sensitivity was 83% (95% IC, 79 to 87) and specificity was 85% (95% IC, 80-89) using software Meta-Disc. For cervical lesion vs positive or negative biopsy, the area under the curve (AUC) was 0.90 with Q* point value of 0.84. Conclusion: our data agree with the hypothesis that ProEx C represents an early event in cervical carcinogenesis that could be associated with the initiation and progression of cervical lesions and is expressed in the studied tests may reveal greater diagnostic accuracy of these tests.
140

Proex C para o diagnóstico de lesões intra-epiteliais no colo do útero

Pias, Andressa de Azambuja January 2012 (has links)
Foi realizada uma análise quantitativa sistemática da literatura para verificar a acurácia do biomarcador ProEx C em pacientes com ASC-US, ASCH e SIL. Metodologia: A pesquisa foi realizada no MEDLINE (PubMed e OVID), EMBASE, LILACS, IBECS, BIOSIS, Web of Science, SCOPUS, desde 1966 até Novembro de 2011. Esta revisão esteve centrada em estudos que cumpriram as três condições para a seleção do estudo, que incluem teste de Papanicolaou, teste de triagem ProEx C e histopatologia como o teste de referência. Resultados: Cinco estudos, incluindo 713 mulheres, foram analisados. Das biopsias positivas, 83% (355/429) foram positivas para ProEx C, enquanto 14% (41/284) das biópsias negativas foram positivas para ProEx C. A sensibilidade combinada foi de 83% (95% IC, 79-87) e especificidade foi de 85% (95% IC, 80-89) usando o soaftware Meta-Disc. Para lesão cervical vs biópsia positiva ou negativa, a área sob a curva (AUC) foi de 0,90 com valor do ponto Q * de 0,84. Conclusão: nossos dados concordam com a hipótese de que ProEx C representa um evento precoce na carcinogênese cervical e que poderiam estar associados com a iniciação e progressão de lesões cervicais e, se expressados nos exames estudados podem revelar maior acurácia diagnóstica destes exames. / Undertook a quantitative systematic review of the literature to ascertain the accuracy of the biomarker ProEx C in patients with ASC-US, ASC-H and SIL. Methods: A comprehensive search of the MEDLINE (PubMed and OVID interface), EMBASE, LILACS, IBECS, BIOSIS, Web of Science, SCOPUS, index from 1966 to November 2011. This review focused on studies that fulfill the three mandatory conditions for study selection that include Pap Test, triage testing ProEx C and histopathology like the reference test. Results: Five studies, including 713 women, were analyzed. 83% (355/429) of positive biopsy were positive for ProEx C activity, while 14% (41/284) of the negative biopsy were positive for ProEx C activity. Pooled sensitivity was 83% (95% IC, 79 to 87) and specificity was 85% (95% IC, 80-89) using software Meta-Disc. For cervical lesion vs positive or negative biopsy, the area under the curve (AUC) was 0.90 with Q* point value of 0.84. Conclusion: our data agree with the hypothesis that ProEx C represents an early event in cervical carcinogenesis that could be associated with the initiation and progression of cervical lesions and is expressed in the studied tests may reveal greater diagnostic accuracy of these tests.

Page generated in 0.075 seconds