• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 18
  • 3
  • Tagged with
  • 60
  • 34
  • 32
  • 28
  • 21
  • 19
  • 15
  • 15
  • 15
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Synthès de nano-films bio-fonctionnels pour l'immobilisation spécifique d'espèces biologiques / Synthesis of biofunctionalized nanofilms for the immobilization of biomolecules

Mousli, Yannick 11 December 2017 (has links)
Le contrôle des propriétés physicochimiques et de l’état de surface des solides constituent un enjeu majeur pour le développement des biotechnologies, et notamment des bio-capteurs. Pour des applications en analyse et diagnostic biologique, la fonctionnalisation des surfaces à base de silicium peut être réalisée grâce à la formation d’un nano-film organique appelé SAM (Self-Assembled Monolayer). L'objectif de ce travail de thèse est ainsi de synthétiser des monocouches sur des substrats de silice afin de les rendre biofonctionnels en vue de développer une plateforme de biodétection polyvalente.Pour ce faire, deux types d'agents de couplages ont été envisagés : l'un possédant un motif azoture et l'autre une biotine. L’obtention de ces deux types de molécules a fait l’objet d’un travail de synthèse permettant d’aboutir à de nouveaux organosilanes fonctionnels directement greffables sur des surfaces de SiO2. La biofonctionnalité est introduite sur le substrat par la biotine, soit directement lors de la formation de la SAM, soit par chimie click sur les monocouches fonctionnalisées par des azotures.Les différentes surfaces obtenues ont ensuite été caractérisées par Spectroscopie Infrarouge de Réflexion–Absorption par Modulation de Polarisation (PM-IRRAS) et par Microscopie de Force Atomique (AFM). La bioactivité des SAMs biotinylées a enfin été évaluée par un protocole mettant en jeu une streptavidine modifiée par une enzyme (la HRP) capable de catalyser des réactions d’oxydoréduction de molécules chromogènes. / Control of surface physicochemical properties is a key aspect for the development of many biotechnological tools, such as biosensors. For analysis and diagnostic, the functionalization of silica-based surfaces may be carried out through the creation of an organic nano-film named a Self-Assembled Monolayer (SAM). The main goal of this PhD work is thus to synthesize monolayer on SiO2 substrates in order give them biofunctionality, aiming at developing a versatile biodetection platform.In order to do so, we focused on the synthesis of two types of coupling agents, either bearing an azide moiety or a biotin. This organic synthesis work led to two new sorts of functional organosilanes which can be directly grafted onto silica surfaces. Biofunctionality itself is introduced by the biotin, either through the formation of the monolayer or through click chemistry on azide-functionalized SAMs.Said surfaces were then fully characterized using Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) an Atomic Force Microscopy (AFM). Bioactivity of biotinylated surfaces was then monitored using streptavidin conjugated with HRP in order to catalyze the redox reaction of chromogenic substrates.
42

Synthèses de nouvelles monocouches auto-assemblées à partir d’organosilanes fonctionnels capables d’auto-association par liaisons hydrogène / Synthesis of new self-assembled monolayers with functional organosilanes capable of auto-association by H-bonds

Ramin, Michael 15 December 2010 (has links)
Il existe une très forte demande en biocapteurs pour la détection d’agents pathogènes dans le domaine environnemental et médical. Dans ce contexte, le contrôle de l’état de surface des biocapteurs joue un rôle crucial. Les monocouches auto-assemblées (Self-Assembled Monolayers, SAMs) permettent de fonctionnaliser de manière homogène et reproductible ces surfaces. Ces SAMs sont généralement obtenues à partir d’agents de couplage siliciés à longue chaîne alkyle. Mais, ces composés sont souvent difficiles à synthétiser et à purifier en raison de leurs faibles solubilités dans les solvants organiques. C’est pour cela que nous avons proposé d’introduire une fonction polaire (amide ou urée) au sein de ces films. Ces fonctions permettent également un auto-assemblage des molécules sur le substrat au moyen de liaisons hydrogène entre les molécules. Les nouvelles monocouches fonctionnelles ont été caractérisées entre autres par spectroscopie infrarouge de réflexion-absorption par modulation de polarisation (PM-IRRAS) ce qui a permis d’identifier les différents groupes moléculaires. Ces monocouches ont aussi montré leurs capacités à immobiliser une molécule biologique (Protéine A). / There is an increasing demand for biosensors to detect pathogens in environmental and medical fields. In this context, the control of the surface properties plays an important role. Self-Assembled Monolayers (SAMs) allow to functionalize these surfaces homogeneously and reproducible. SAMs on silicon based surfaces are usually obtained from silylated coupling agents with long alkyl chain. However, these compounds are often difficult to purify owing to their low solubility in organic solvents. That’s why we proposed to introduce a polar function (amide or urea) in the molecular structure. These precursors were also capable of association by H-bonds and offer possibilities to control the organic assembly on the surfaces. The new functional monolayers were characterized by Polarization Modulation Infrared Reflection Adsorption Spectroscopy (PM-IRRAS) and others techniques such as XPS and contact angle in order to identify the different molecular groups on the surface. These functionalized monolayers have also shown their ability to immobilize biomolecules (Protein A).
43

Towards the nanomechanical actuation and controlled assembly of nanomaterials using charge-transfer reactions in electroactive self-assembled monolayers

Norman, Lana 07 1900 (has links)
Les microcantileviers fonctionnalisés offrent une plateforme idéale pour la nano- et micro-mécanique et pour le développement de (bio-) capteurs tres sensible. Le principe d’opération consiste dans des évènements physicochimiques qui se passent du côté fonctionnalisé du microcantilevier induisant une différence de stress de surface entre les deux côtés du cantilevier qui cause une déflexion verticale du levier. Par contre, les facteurs et les phénomènes interfacials qui régissent la nature et l'intensité du stress de surface sont encore méconnus. Pour éclaircir ce phénomène, la première partie de cette thèse porte sur l'étude des réactions de microcantileviers qui sont recouverts d'or et fonctionnalisés par une monocouche auto-assemblée (MAA) électroactive. La formation d'une MAA de ferrocènylundécanethiol (FcC11SH) à la surface d'or d'un microcantilevier est le modèle utilisé pour mieux comprendre le stress de surface induit par l’électrochimie. Les résultats obtenus démontrent qu'une transformation rédox de la MAA de FcC11SH crée un stress de surface qui résulte dans une déflexion verticale du microcantilevier. Dépendamment de la flexibilité du microcantilevier, cette déflexion peut varier de quelques nanomètres à quelques micromètres. L’oxydation de cette MAA de FcC11SH dans un environnement d'ions perchlorate génère un changement de stress de surface compressive. Les résultats indiquent que la déflexion du microcantilevier est due à une tension latérale provenant d'une réorientation et d'une expansion moléculaire lors du transfért de charge et de pairage d’anions. Pour vérifier cette hypothèse, les mêmes expériences ont été répéteés avec des microcantileviers qui ont été couverts d'une MAA mixte, où les groupements électroactifs de ferrocène sont isolés par des alkylthiols inactifs. Lorsqu’un potentiel est appliqué, un courant est détecté mais le microcantilevier ne signale aucune déflexion. Ces résultats confirment que la déflexion du microcantilevier est due à une pression latérale provenant du ferrocènium qui se réorganise et qui crée une pression sur ses pairs avoisinants plutôt que du couplage d’anions. L’amplitude de la déflexion verticale du microcantilevier dépend de la structure moléculaire de la MAA et du le type d’anion utilisés lors de la réaction électrochimique. Dans la prochaine partie de la thèse, l’électrochimie et la spectroscopie de résonance de plasmon en surface ont été combinées pour arriver à une description de l’adsorption et de l’agrégation des n-alkyl sulfates à l’interface FcC11SAu/électrolyte. À toutes les concentrations de solution, les molécules d'agent tensio-actif sont empilées perpendiculairement à la surface d'électrode sous forme de monocouche condensé entrecroisé. Cependant, la densité du film spécifiquement adsorbé s'est avérée être affectée par l'état d'organisation des agents tensio-actifs en solution. À faible concentration, où les molécules d'agent tensio-actif sont présentes en tant que monomères solvatés, les monomères peuvent facilement s'adapter à l’évolution de la concentration en surface du ferrocènium lors du balayage du potential. Cependant, lorsque les molécules sont présentes en solution en tant que micelles une densité plus faible d'agent tensio-actif a été trouvée en raison de l'incapacité de répondre effectivement à la surface de ferrocenium générée dynamiquement. / Surface-functionalized microcantilevers provide an ideal platform for nano- and micro-mechanical actuation and highly sensitive sensing technologies. The basic principle of operation is that a chemical or physical event occurring at the functionalized surface of one side of the cantilever generates a surface stress difference (between the active functionalized and passive non-functionalized sides) that causes the cantilever to bend away from its resting position. However, the factors and phenomena contributing to both the nature and magnitude of the surface stress are not well understood. To this end, the first part of this thesis focused on investigating the potential-controlled actuation and surface stress properties of free-standing gold-coated microcantilevers functionalized with a redox-active self-assembled monolayer (SAM). A ferrocenylundecanethiolate (FcC11SAu) SAM on a gold-coated cantilever was used as a model system to investigate the surface stress generated by faradaic chemistry. The data obtained clearly demonstrates that the electrochemical transformation of a ferrocene moiety in a monomolecular organic film can generate a surface stress change of sufficient magnitude to deflect a microcantilever. In fact, depending on the flexibility of the microcantilever, the mechanical deflection resulting from the redox transformation of the surface-tethered ferrocene can range on the order of nanometers to micrometers. The oxidation of the FcC11SAu SAM in perchlorate electrolyte generates a compressive surface stress change. The microcantilever deflection is driven by the lateral tension resulting from molecular reorientation/volume expansion accompanying the charge-transfer and ion-pairing events. To verify this hypothesis, mixed SAM-modified microcantilevers, in which the electroactive ferrocenes are isolated from one another by an inert n-alkylthiolate matrix, were investigated. Under an applied potential, a Faradaic current was measured, but no microcantilever beam deflection was observed. This finding confirms that the cantilever responds to the lateral pressure exerted by an ensemble of re-orienting ferrocenium-bearing alkylthiolates upon each other rather than to individual anion pairing events. Changes in molecular structure and anion type can also be used to modulate the extent of micromechanical motion. In the next part of the dissertation, electrochemical measurements and surface plasmon resonance spectroscopy were combined to present a description of the adsorption and aggregation of n-alkyl sulfates at the FcC11SAu/electrolyte interface. At all bulk solution concentrations, the surfactant moieties packed perpendicular to the electrode surface in the form of an interdigitated condensed film. However, the density of the specifically adsorbed film was found to be affected by the organizational state of the surfactants in solution. At low concentrations, where the surfactant molecules are present as solvated monomers, the monomers can readily adapt to the changing ferrocenium concentration with the potential potential scan. However, when the molecules are present as micellar structures in solution, a lower surfactant packing density was found because of the inability to respond effectively to the dynamically generated surface ferroceniums. This research demonstrates the potential utility of charge-transfer interactions for organizing materials at solid interfaces and effecting micromechanical actuation using an electrifical stimulus.
44

Well-controlled and well-described SAMs-based platforms for the study of material-bacteria interactions occuring at the molecular scale / Des plateformes monocouches moléculaires auto-assemblées, contrôlées et décrites de façon approfondie, pour l'étude des interactions matériau-bactérie à l'échelle moléculaire

Böhmler, Judith 11 September 2012 (has links)
L'adhésion bactérienne est la première étape du processus de formation d'un biofilm et est un enjeu majeur de la recherche depuis plusieurs dizaines d'années. Les biofilms ont des conséquences parfois dramatiques dans des domaines comme la santé, l'agroalimentaire ou la purification des eaux usées. Toutefois, l'adhésion bactérienne reste un phénomène mal compris. Dans cette thèse, l'adhésion bactérienne est étudiée sur des surfaces modèles très bien organisées et structurées, de chimie de surface variable à l'échelle moléculaire. Une méthodologie de caractérisation adaptée aux monocouches déposées sur wafers de silicium est proposée. Des surfaces modèles composées de monocouches mixtes auto-assemblées de densités variables de NH2 dans un continuum de CH, sont développées et optimisées. Ces surfaces contrôlées, de densités de 0% NH2 à 100% NH2 dans CH3, sont utilisées comme outil pour étudier l'adhésion bactérienne en conditions de culture « batch »et « temps réel ». Les résultats montrent un impact significatif sur l'adhésion bactérienne de faibles différences chimiques à l'échelle moléculaire. Les résultats des expériences menées en conditions « batch » permettent de déterminer deux zones « plateau » dans lesquelles l'adhésion bactérienne ne varie pas significativement malgré des variations importantes de la concentration en groupements amine sur la surface. Une zone de transition entre les zones « plateau » est mise en évidence, dans laquelle une faible modification de la concentration en groupement amine mène à l'augmentation / diminution significative du nombre de bactéries adhérées. Cette tendance est montrée pour deux souches différentes de bactérie. / Bacterial adhesion is the first step of biofilm formation and in the focus of research interest since several decades. Biofilms cause many problems, sometimes dramatic, for example in health, food packing or waste water purification. Despite of high interest, bacterial adhesion process is only poorly understood yet. In this work, bacterial adhesion was investigated on well-organized and structured model surfaces with various chemistries at molecular scale. For that purpose a characterization methodology was developed to sufficiently analyze monolayers on silicon wafers, and controlled mixed monolayers surfaces with different densities of NH 2 backfilled with CH3 were developed and optimized. These controlled surfaces with different densities of 0 % NH2 up to 100% NH2 were eventually used as tool to study bacterial adhesion in batch and real time conditions. The results demonstrate a significant impact on bacterial adhesion of weak difference in the surface chemistry at molecular scale. In the batch experiments, two so-called "plateaus" zones were determined, in which bacterial adhesion is not significantly different despite the change of the amine concentration on the surface. On the contrary, one transition zone exists between the "plateaus" in which a slight chunge.in the amine concentration leads to a significant increase / decrease of the bacterial adhesion. The same trend of bacteria behavior was observed for different bacterial strains.
45

Interactions protéines-membranes : conséquences sur l'état physique et l'organisation des lipides / Proteine-membrane interaction : consequences on physical state and organisation of lipids

François-Moutal, Liberty 18 April 2013 (has links)
Les isoenzymes de nucléoside diphosphate kinase (NDPK) sont connues depuis maintenant presque 60 ans et n'ont été considérées que pour leur activité catalytique de transfert de groupement phosphoryle. La découverte du gène nme, un gène antimétastatique codant une NDPK, a renouvelé l'intérêt scientifique pour cette famille d'enzymes. Il est désormais connu que la multiplication des gènes durant l'évolution a été accompagnée de diversifications structurales et fonctionnelles. J'ai étudié la fixation des NDPK-A, -B et –D (retrouvées associées aux membranes biologiques, bien que le rôle de cette association soit encore méconnu) à des membranes modèles, et j'ai trouvé des différences dans les mécanismes de fixation. J'ai montré la capacité de la NDPK-D, isoforme mitochondriale, à interagir avec des membranes anioniques ou zwitterioniques, à augmenter leur fluidité et à former des domaines protéolipidiques en présence de CL, lipide anionique spécifique de la membrane mitochondriale interne. J'ai observé cette capacité à former des domaines protéolipidiques avec d'autres protéines interagissant avec la CL, comme la créatine kinase mais pas le cytochrome C. La NDPK-A ne se fixe pas aux phospholipides du feuillet interne de la membrane plastique, ce qui suggère un autre partenaire in vivo. La NDPK-B n'interagit qu'avec des membranes anioniques via un processus en deux étapes, provoque une diminution de fluidité et est capable de former des domaines protéolipidiques. La ségrégation des lipides anioniques induite par la fixation de protéines pourrait contribuer à la formation de plateformes au sein de la membrane susceptibles de servir de point d'ancrage à de nombreuses molécules, modulant ainsi les fonctions cellulaires / Nucleoside diphosphate kinase isoenzymes (NDPK) have been known for nearly 60 years and, until recently, have been considered as housekeeping enzymes. The discovery of a nme gene, an antimetastatic gene that codes for a NDPK, revived the interest for this family. It is now known that the multiplication of nme genes throughout evolution has been accompanied with structural and functional diversification. I studied the binding of NDPK-A, -B and –D (which ae retrieved associated to cellular membranes where they are thought to play several roles) to model membranes and found differences in their behavior towards different compositions of phospholipids. I showed the ability of the NDPKD mitochondrial isoform to interact with both anionic and zwitterionic membranes, to modify their fluidity and to form proteolipidic domains in presence of CL, a mitochondrial inner membrane specific anionic lipid. I observed this ability to form proteo-cardiolipin domains with other CL interacting protein like creatine kinase but not with cytochrome c. NDPK-A was not able to bind to inner leaflet plasma membrane mimicking systems suggesting another partner in vivo. Concerning NDPK-B, it interacted only with anionic membranes via a two step-process, induced a decrease of the membrane fluidity and was able to form proteolipidic domains. Such anionic lipid segregation triggered by protein binding may contribute to platforms formation within membranes. Those platforms are then susceptible to provide a functional docking platform for numerous molecules and thus to modulate cellular functions
46

Collective effects in living matter : from cytokinetic rings to epithelial monolayers / Effets collectifs dans la matière vivante : des anneaux de cytokinèse aux monocouches épithéliales

Thiagarajan, Raghavan 26 September 2016 (has links)
L’émergence de comportements collectifs cellulaires n’est pas bien comprise. Nous l’abordons dans deux systèmes biologiques. A l'échelle du micromètre lors de la constriction de l’anneau cytokinétique, nous montrons que des complexes d’acto-myosine s’auto-organisent sous forme d’agrégats dans la levure à fission et dans la cellule de mammifères. Ces auto-organisations découlent de règles d'interactions communes mais pour des fonctions distinctes, le transport et la génération de stress respectivement. A l'échelle de 100 micromètres, nous observons des pulsations corrélées de cellules épithéliales. Nous montrons les rôles du frottement avec la surface, et le couplage entre l’aire cellulaire, sa hauteur et sa contractilité. Nous présentons aussi deux études, des polyamines synthétiques pour étudier la polymérisation d'actine in vivo, puis l’inversion de sens dans la migration - la ratchetaxie. Cette thèse illustre l'importance des phénomènes physiques dans la dynamique cellulaire. / The emergence of collective behavior from the interaction of individual units is not clear. In this thesis, we address this question in two different systems at different scales. At the micrometer scale during cytokinetic ring constriction, we show that acto-myosin self-organizes into rotating and static clusters in fission yeast and mammalian cells. These self-organizations arise from common interaction rules, but to serve distinct functions, transport and stress generation respectively. At 100 micrometers scale, we report correlated pulsations of cells in an epithelial monolayer. We show the key roles of substrate friction, and the tight coupling between cell area, cell height and contractility. We also present two other studies: synthetic polyamines for studying actin polymerization in vivo, and direction reversal in single cell migration during ratchetaxis. Altogether, this PhD illustrates the importance of physical phenomena in cellular dynamics.
47

Maîtrise des processus opto-électroniques d'architectures moléculaires π-conjuguées : auto-assemblage et sonde locale.

Bocheux, Amandine 23 November 2011 (has links) (PDF)
Ce travail de thèse porte sur l'étude des limites physiques requises pour la conception d'une diode organique électroluminescente à l'échelle la plus réduite qui soit, celle d'un faible nombre d'atomes. Nous avons travaillé avec plusieurs systèmes moléculaires organiques π-conjugués afin de déterminer les critères essentiels que doit remplir une molécule pour pouvoir être utilisée comme telle. Dans ce cadre, le Microscope à Effet Tunnel s'avère être un outil particulièrement adapté pour étudier l'auto-assemblage de tous ces systèmes sur une surface ainsi que pour positionner avec une haute précision les électrodes constituées par la pointe et le substrat conducteurs. L'organisation sur graphite de tectons tridimensionnels à pilier central paracyclophane a tout d'abord été étudiée. Ils présentent, au sein d'une même entité moléculaire, l'ensemble des fonctions requises pour obtenir une émission : celles d'organisation structurée par les interactions avec le substrat et celles d'opto-électronique. Le passage à un substrat d'or, mieux adapté pour l'exaltation par les plasmons, a ensuite été examiné. Une autre stratégie quant à l'organisation des molécules reposant sur une modification de leur nature et de leur longueur a été choisie avec l'usage d'oligophénylènes et de poly(3-alkylthiophènes). Leur stabilité, qui constitue le paramètre clef pour l'émission de photons sous pointe, a demandé à être améliorée sur ce même substrat et a motivé le développement d'une troisième architecture afin de consolider l'ensemble de l'édifice moléculaire. Des thiols chimisorbés ont été déposés sur or et des polymères fluorescents s'y sont superposés par création d'une liaison électrostatique. L'obtention d'une émission localisée avec un tel système conclue ce travail qui souligne que le principal obstacle à la réalisation d'une diode de taille minimale sera la stabilité structurale de ses constituants moléculaires.
48

ANALYSE DES MECANISMES DE PENETRATION INTRAMEMBRANAIRE DE PORPHYRINES GLYCOCONJUGUEES UTILISABLES EN THERAPIE PHOTODYNAMIQUE DES CANCERS: MODELISATION DES INTERACTIONS SPECIFIQUES ET NON-SPECIFIQUES

Makky, Ali 26 November 2010 (has links) (PDF)
La complexité des membranes biologiques est à l'origine du développement des modèles membranaires artificiels comme outils indispensables à la compréhension des mécanismes d'interaction entre médicaments et membrane cellulaire. Cette thèse porte sur l'étude des interactions non spécifiques et spécifiques entre de nouvelles porphyrines glycoconjuguées utilisables en thérapie photodynamique (PDT) et des modèles membranaires biomimétiques (monocouches, bicouches planes supportées et liposomes) du rétinoblastome portant à leur surface une lectine spécifique du mannose. Les principales techniques utilisées pour cette étude sont la tensiométrie de surface, la spectrométrie de fluorescence, la microbalance à cristal de quartz avec mesure de dissipation (QCM-D) et diffusion quasi-élastique de lumière (DLS). Les porphyrines glycoconjuguées se sont avérées comme des molécules prometteuses, capables à interagir d'une manière non spécifique (pénétration passive) et spécifique (ciblage des récepteurs de type lectinique) avec les modèles membranaires du rétinoblastome.
49

Autoassemblage de monocouches organiques à faible température

Wiegart, Lutz 02 July 2007 (has links) (PDF)
A température ambiante, la plupart des monocouches constituées de molécules formées de chaînes alcanes présentent des phases caractérisées par la rotation des chaînes autour de leur axe moléculaire. Afin d'obtenir un ordre cristallin, il est impératif de réduire l'énergie du système. De nouvelles sous-phases liquides utilisant des agents cryoprotectifs permettent d'accéder à des températures plus faibles que la température de glace de l'eau. Les monocouches de surfactants tels que les acides gras ou les phospholipides ont été préparées à volume et pression surfacique constants. L'étude de la stabilité des films par refroidissement a été effectuée par des isothermes de Langmuir et GIXOS et celle de l'ordre dans le plan par GIXD. Les molécules adoptent des phases cristallines qui sont induites par un processus d'autoassemblage d'origine exclusivement entropique et dont la densité de compactage est similaire à celle d'un monocristal à trois dimensions. La technique d'XPCS a enfin été employée pour relier la dynamique de surface du système étudié à la formation des phases cristallines.
50

Towards the nanomechanical actuation and controlled assembly of nanomaterials using charge-transfer reactions in electroactive self-assembled monolayers

Norman, Lana 07 1900 (has links)
Les microcantileviers fonctionnalisés offrent une plateforme idéale pour la nano- et micro-mécanique et pour le développement de (bio-) capteurs tres sensible. Le principe d’opération consiste dans des évènements physicochimiques qui se passent du côté fonctionnalisé du microcantilevier induisant une différence de stress de surface entre les deux côtés du cantilevier qui cause une déflexion verticale du levier. Par contre, les facteurs et les phénomènes interfacials qui régissent la nature et l'intensité du stress de surface sont encore méconnus. Pour éclaircir ce phénomène, la première partie de cette thèse porte sur l'étude des réactions de microcantileviers qui sont recouverts d'or et fonctionnalisés par une monocouche auto-assemblée (MAA) électroactive. La formation d'une MAA de ferrocènylundécanethiol (FcC11SH) à la surface d'or d'un microcantilevier est le modèle utilisé pour mieux comprendre le stress de surface induit par l’électrochimie. Les résultats obtenus démontrent qu'une transformation rédox de la MAA de FcC11SH crée un stress de surface qui résulte dans une déflexion verticale du microcantilevier. Dépendamment de la flexibilité du microcantilevier, cette déflexion peut varier de quelques nanomètres à quelques micromètres. L’oxydation de cette MAA de FcC11SH dans un environnement d'ions perchlorate génère un changement de stress de surface compressive. Les résultats indiquent que la déflexion du microcantilevier est due à une tension latérale provenant d'une réorientation et d'une expansion moléculaire lors du transfért de charge et de pairage d’anions. Pour vérifier cette hypothèse, les mêmes expériences ont été répéteés avec des microcantileviers qui ont été couverts d'une MAA mixte, où les groupements électroactifs de ferrocène sont isolés par des alkylthiols inactifs. Lorsqu’un potentiel est appliqué, un courant est détecté mais le microcantilevier ne signale aucune déflexion. Ces résultats confirment que la déflexion du microcantilevier est due à une pression latérale provenant du ferrocènium qui se réorganise et qui crée une pression sur ses pairs avoisinants plutôt que du couplage d’anions. L’amplitude de la déflexion verticale du microcantilevier dépend de la structure moléculaire de la MAA et du le type d’anion utilisés lors de la réaction électrochimique. Dans la prochaine partie de la thèse, l’électrochimie et la spectroscopie de résonance de plasmon en surface ont été combinées pour arriver à une description de l’adsorption et de l’agrégation des n-alkyl sulfates à l’interface FcC11SAu/électrolyte. À toutes les concentrations de solution, les molécules d'agent tensio-actif sont empilées perpendiculairement à la surface d'électrode sous forme de monocouche condensé entrecroisé. Cependant, la densité du film spécifiquement adsorbé s'est avérée être affectée par l'état d'organisation des agents tensio-actifs en solution. À faible concentration, où les molécules d'agent tensio-actif sont présentes en tant que monomères solvatés, les monomères peuvent facilement s'adapter à l’évolution de la concentration en surface du ferrocènium lors du balayage du potential. Cependant, lorsque les molécules sont présentes en solution en tant que micelles une densité plus faible d'agent tensio-actif a été trouvée en raison de l'incapacité de répondre effectivement à la surface de ferrocenium générée dynamiquement. / Surface-functionalized microcantilevers provide an ideal platform for nano- and micro-mechanical actuation and highly sensitive sensing technologies. The basic principle of operation is that a chemical or physical event occurring at the functionalized surface of one side of the cantilever generates a surface stress difference (between the active functionalized and passive non-functionalized sides) that causes the cantilever to bend away from its resting position. However, the factors and phenomena contributing to both the nature and magnitude of the surface stress are not well understood. To this end, the first part of this thesis focused on investigating the potential-controlled actuation and surface stress properties of free-standing gold-coated microcantilevers functionalized with a redox-active self-assembled monolayer (SAM). A ferrocenylundecanethiolate (FcC11SAu) SAM on a gold-coated cantilever was used as a model system to investigate the surface stress generated by faradaic chemistry. The data obtained clearly demonstrates that the electrochemical transformation of a ferrocene moiety in a monomolecular organic film can generate a surface stress change of sufficient magnitude to deflect a microcantilever. In fact, depending on the flexibility of the microcantilever, the mechanical deflection resulting from the redox transformation of the surface-tethered ferrocene can range on the order of nanometers to micrometers. The oxidation of the FcC11SAu SAM in perchlorate electrolyte generates a compressive surface stress change. The microcantilever deflection is driven by the lateral tension resulting from molecular reorientation/volume expansion accompanying the charge-transfer and ion-pairing events. To verify this hypothesis, mixed SAM-modified microcantilevers, in which the electroactive ferrocenes are isolated from one another by an inert n-alkylthiolate matrix, were investigated. Under an applied potential, a Faradaic current was measured, but no microcantilever beam deflection was observed. This finding confirms that the cantilever responds to the lateral pressure exerted by an ensemble of re-orienting ferrocenium-bearing alkylthiolates upon each other rather than to individual anion pairing events. Changes in molecular structure and anion type can also be used to modulate the extent of micromechanical motion. In the next part of the dissertation, electrochemical measurements and surface plasmon resonance spectroscopy were combined to present a description of the adsorption and aggregation of n-alkyl sulfates at the FcC11SAu/electrolyte interface. At all bulk solution concentrations, the surfactant moieties packed perpendicular to the electrode surface in the form of an interdigitated condensed film. However, the density of the specifically adsorbed film was found to be affected by the organizational state of the surfactants in solution. At low concentrations, where the surfactant molecules are present as solvated monomers, the monomers can readily adapt to the changing ferrocenium concentration with the potential potential scan. However, when the molecules are present as micellar structures in solution, a lower surfactant packing density was found because of the inability to respond effectively to the dynamically generated surface ferroceniums. This research demonstrates the potential utility of charge-transfer interactions for organizing materials at solid interfaces and effecting micromechanical actuation using an electrifical stimulus.

Page generated in 0.0623 seconds