• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude expérimentale de neurones de Morris-Lecar : réalisation, couplage et interprétation / Experimental study of Morris-Lecar neuron : design, coupling and interpretation

Behdad, Rachid 23 November 2015 (has links)
Nous présentons dans ce manuscrit un neurone électronique expérimental basé sur le modèle complet de Morris-Lecar sans simplifications, afin d’obtenir une cellule de base pour étudier l’association collective de neurones couplés. La conception du circuit est donnée en détail selon les différents courants ioniques du modèle. Les résultats expérimentaux sont comparés aux prédictions théoriques, conduisant à un bon accord, ce qui valide donc notre circuit. Nous présentons les différents domaines de bifurcation selon les paramètres de contrôle, la capacité membranaire et le courant d’excitation. Nous avons mis en évidence le comportement du neurone pour chaque zone de paramétrage. Un couplage de ces neurones est introduit en utilisant des simulations Pspice (Multisim) où les neurones ont été conçus pour être les mêmes qu’expérimentalement. Premièrement, nous avons simulé une chaîne fermée de 26 neurones faiblement couplés le long de laquelle les ondes se propagent avec des phases en opposition 2 à 2. Pour cette première étude, on travaille dans une zone présentant uniquement un cycle limite stable. Deuxièmement, une dizaine de neurones sont couplés, avec un choix de paramètres correspondant à une deuxième zone où il y a deux attracteurs, un cycle limite stable et un point fixe stable, tandis qu’entre eux se trouve un cycle instable. Selon le nombre de neurones qui oscillent initialement et les conditions aux bords, nos études montrent que le système évolue vers un état où seuls 1, 2 ou 3 neurones restent à l’état oscillatoire, tandis que les autres sont retournés à un état de repos, ce qui met en évidence un phénomène de clusterisation. Il est à noter que certaines parties de notre circuit de base peuvent ainsi être utilisées dans d’autres modèles de neurones, car ces parties correspondent à la production des divers courants ioniques qu’on retrouve dans d’autres modèles. / We present in this manuscript an experimental electronic neuron based on complete Morris-Lecar model without simplifications, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given in details according to the ionic currents of this model. The experimental results are compared with the theoretical prediction, leading to a good agreement between them, which therefore validates the circuit. We present the different areas according to the bifurcation control parameters, the membrane capacitance and the excitation current. We have highlighted the behavior of the neuron for each parameters zone. A coupling of such neurons is introduced by using Pspice simulations (Multisim) where neurons have been designed to be the same as the experimental one. First, we simulate a chain of up to 26 neurons weakly coupled along which anti-phase wave patterns propagate with phases in opposition 2 to 2. Second, about ten neurons are coupled, and we succeed to generate clusters based on the boundary conditions of theneurons and their initial conditions. For this study, we work in the region close to the fold bifurcation of limit cycles, where two limit cycles exist, one being stable and another one unstable. Our studies show that the system evolves to a state where only 1, 2 or 3 neurons remain in the oscillatory state, while others returned to a state of rest, which highlights a phenomenon of clustering. The use of some parts of the circuit is also possible for other neuron models, namely for those based on ionic currents.
2

Channel Noise and Firing Irregularity in Hybrid Markov Models of the Morris-Lecar Neuron

Bennett, Casey 26 January 2016 (has links)
No description available.
3

Effects of Repulsive Coupling in Ensembles of Excitable Elements

Ronge, Robert 23 December 2022 (has links)
Die vorliegende Arbeit behandelt die kollektive Dynamik identischer Klasse-I-anregbarer Elemente. Diese können im Rahmen der nichtlinearen Dynamik als Systeme nahe einer Sattel-Knoten-Bifurkation auf einem invarianten Kreis beschrieben werden. Der Fokus der Arbeit liegt auf dem Studium aktiver Rotatoren als Prototypen solcher Elemente. In Teil eins der Arbeit besprechen wir das klassische Modell abstoßend gekoppelter aktiver Rotatoren von Shinomoto und Kuramoto und generalisieren es indem wir höhere Fourier-Moden in der internen Dynamik der Rotatoren berücksichtigen. Wir besprechen außerdem die mathematischen Methoden die wir zur Untersuchung des Aktive-Rotatoren-Modells verwenden. In Teil zwei untersuchen wir Existenz und Stabilität periodischer Zwei-Cluster-Lösungen für generalisierte aktive Rotatoren und beweisen anschließend die Existenz eines Kontinuums periodischer Lösungen für eine Klasse Watanabe-Strogatz-integrabler Systeme zu denen insbesondere das klassische Aktive-Rotatoren-Modell gehört und zeigen dass (i) das Kontinuum eine normal-anziehende invariante Mannigfaltigkeit bildet und (ii) eine der auftretenden periodischen Lösungen Splay-State-Dynamik besitzt. Danach entwickeln wir mit Hilfe der Averaging-Methode eine Störungstheorie für solche Systeme. Mit dieser können wir Rückschlüsse auf die asymptotische Dynamik des generalisierten Aktive-Rotatoren-Modells ziehen. Als Hauptergebnis stellen wir fest dass sowohl periodische Zwei-Cluster-Lösungen als auch Splay States robuste Lösungen für das Aktive-Rotatoren-Modell darstellen. Wir untersuchen außerdem einen "Stabilitätstransfer" zwischen diesen Lösungen durch sogenannte Broken-Symmetry States. In Teil drei untersuchen wir Ensembles gekoppelter Morris-Lecar-Neuronen und stellen fest, dass deren asymptotische Dynamik der der aktiven Rotatoren vergleichbar ist was nahelegt dass die Ergebnisse aus Teil zwei ein qualitatives Bild für solch kompliziertere und realistischere Neuronenmodelle liefern. / We study the collective dynamics of class I excitable elements, which can be described within the theory of nonlinear dynamics as systems close to a saddle-node bifurcation on an invariant circle. The focus of the thesis lies on the study of active rotators as a prototype for such elements. In part one of the thesis, we motivate the classic model of repulsively coupled active rotators by Shinomoto and Kuramoto and generalize it by considering higher-order Fourier modes in the on-site dynamics of the rotators. We also discuss the mathematical methods which our work relies on, in particular the concept of Watanabe-Strogatz (WS) integrability which allows to describe systems of identical angular variables in terms of Möbius transformations. In part two, we investigate the existence and stability of periodic two-cluster states for generalized active rotators and prove the existence of a continuum of periodic orbits for a class of WS-integrable systems which includes, in particular, the classic active rotator model. We show that (i) this continuum constitutes a normally attracting invariant manifold and that (ii) one of the solutions yields splay state dynamics. We then develop a perturbation theory for such systems, based on the averaging method. By this approach, we can deduce the asymptotic dynamics of the generalized active rotator model. As a main result, we find that periodic two-cluster states and splay states are robust periodic solutions for systems of identical active rotators. We also investigate a 'transfer of stability' between these solutions by means of so-called broken-symmetry states. In part three, we study ensembles of higher-dimensional class I excitable elements in the form of Morris-Lecar neurons and find the asymptotic dynamics of such systems to be similar to those of active rotators, which suggests that our results from part two yield a suitable qualitative description for more complicated and realistic neural models.

Page generated in 0.0357 seconds