• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 14
  • 9
  • 7
  • 4
  • 2
  • 2
  • Tagged with
  • 128
  • 128
  • 31
  • 31
  • 23
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigating direct and cooperative microRNA regulation of Pax6 in vivo using a genome engineering approach

Ryan, Bridget 25 September 2019 (has links)
Cells must employ a diversity of strategies to regulate the quantity and functionality of different proteins during development and adult homeostasis. Post-transcriptional regulation of gene transcripts by microRNAs (miRNAs) is recognized as an important mechanism by which the dosage of proteins is regulated. Despite this, the physiological relevance of direct regulation of an endogenous gene transcript by miRNAs in vivo is rarely investigated. PAX6 is a useful model gene for studying miRNA regulation directly. PAX6 is highly dosage-sensitive transcription factor that is dynamically expressed during development of the eye, nose, central nervous system, gut and endocrine pancreas, and is mutated in the haploinsufficiency disease aniridia. Several miRNAs have been implicated in regulating PAX6 in different developmental contexts. Notably, miR-7 appears to regulate Pax6 during specification of olfactory bulb interneurons in the ventricular-subventricular zone (V-SVZ) of the brain and during development of the endocrine pancreas. Here, we produced a bioinformatics tool to enable selective mutation of candidate microRNA recognition elements (MREs) for specific miRNAs while ensuring that new MREs are not inadvertently generated in the process. We then performed the first comprehensive analysis of the mouse Pax6 3’ untranslated region (3’UTR) to identify MREs that may mediate miRNA regulation of Pax6 and to identify miRNAs capable of interacting with the 3’UTR of Pax6. Using Pax6 3’UTR genetic reporter assay, we confirmed that two MREs for miR-7-5 located at 3’UTR positions 517 and 655 function together to regulate PAX6. We generated mice harbouring mutations in the Pax6 3’UTR that disrupt these miR-7-5p MREs, individually or in combination, to explore the biological relevance of miRNA regulation directly. PAX6 protein abundance was elevated in double miR-7-5p MRE mutants relative to wild type and single mutants in the ventral V-SVZ. However, this increase in PAX6 was not associated with an altered dopaminergic periglomerular neuron phenotype in the olfactory bulb. Our findings suggest that, in vivo, microRNA regulation can be mediated through redundant MRE interactions. This work also reveals that directly mutating predicted MREs at the genomic level is necessary to fully characterize the specific phenotypic consequences of miRNA-target regulation. / Graduate
12

The Role of Dysfunctional Subcortical Circuitry in Mouse Models of Developmental Disability

Wells, Michael Frederick January 2015 (has links)
<p>Developmental disabilities, including intellectual disability (ID), attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorders (ASD), affect approximately 1 in 6 children in the United States. Attempts to produce treatment for developmental disabilities have been hampered by our current lack of understanding of the molecular mechanisms underlying these disorders. Advancements in genome sequencing and animal modeling technologies have proven to be an invaluable resource in the elucidation of potential disease mechanisms, with recent studies reporting novel mutations of the Ptchd1 and Shank3 genes in patients with developmental disabilities. Though these two genes have been proposed to play important roles in neural development, their function in the normal brain and defective behavioral output are poorly understood. </p><p>In this dissertation, I characterize the circuit and behavioral dysfunction of the genetically-engineered Ptchd1 and Shank3 knockout mice. With respect to Ptchd1, I found that expression is developmentally enriched in the thalamic reticular nucleus (TRN), which is a group of GABAergic neurons serving as the major source of inhibition for thalamo-cortical neurons. Slice and in vivo electrophysiological experiments revealed that deletion of this gene in mice disrupts SK2 currents and burst firing mechanisms in the TRN, a region that has previously been shown to play an important role in sleep, attention, and cognition. Consistent with clinical findings, Ptchd1 knockout mice display behavioral phenotypes indicative of hyperactivity, attention deficits, motor dysfunction, hyperaggression, and cognitive impairment. Interestingly, attention-like deficits and hyperactivity are rescued by SK2 pharmacological enhancement, suggesting a potential molecular target for developing treatment. </p><p>Shank3 knockout mice display ASD-like phenotypes, including social interaction deficits and repetitive behaviors. In addition, biochemical, electrophysiological, and morphological abnormalities were discovered in the medium spiny neurons (MSNs) of these mice. However, the exact neural circuits and cell types responsible for the autistic-like behaviors have not been identified. To address this important question, I developed a new conditional Shank3 knockout mouse. Importantly, the behavioral abnormalities reported in the original Shank3 knockout mice were recapitulated in this novel conditional Shank3 knockout mouse, indicating that this mouse may be useful for future pathway-specific dissections of ASD-like behaviors. Together, these two sets of studies not only provide mouse models for dissecting the function of PTCHD1and SHANK3 in normal and abnormal neural development, but also demonstrate a critical role for PTCHD1 in TRN neurons and SHANK3 in MSN cells and in the case of PTCHD1, identify potential cellular and circuit pathway targets for much-needed pharmacological intervention.</p> / Dissertation
13

Development and characterisation of a transgenic mouse model to investigate the mechanisms and treatment options for Androgen independent metastatic prostate cancer

Jeet, Varinder , Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2009 (has links)
Currently, there are no preclinical immunocompetent mouse models that adequately represent all stages of prostate cancer (PC) especially, androgen depletion independent (ADI) and bone metastatic PC. The best characterized, Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model is logistically a difficult model for in vivo assessments and it does not adequately represent all stages of PC. Therefore, the aim of this study was to broaden the TRAMP model to include ADI and bone metastatic PC. Three ADI sublines were derived from androgen-sensitive (AS) TRAMP C1 (TC1) and TRAMP C2 (TC2) parental lines in vitro by dihydrotestosterone (TC1-T5 and TC2-T5) deprivation and in vivo by growing in TRAMP female mice (TC1-F1). The new sublines showed several characteristic features of ADI-PC 1.) faster growth rates in vitro and in vivo 2.) increased invasiveness 3.) androgen depletion independence in vitro and in vivo 4.) variable expression of androgen receptor 5.) downregulation of metastasis suppressor genes, E-cadherin and KAI-1. Genetic and molecular studies of ADI sublines showed alteration of genes representing major cancer related pathways. ADI TC1-T5, that displayed the most aggressive phenotype/genotype was selected to expand the TRAMP model to represent PC metastases Metastatic ability of TC1-T5 to migrate to bone and other soft tissues after intracardiac injections was shown in contrast to AS TC1 cells. Bone metastatic lesions displayed both osteoblastic and osteolytic features in multiple locations. Additionally, unlike AS TC1, the TC1-T5 tumours were able to grow with 100% incidence in the prostate and as lungs pseudometastases. The ADI PC lines were used to explore Aurora Kinases (AKs) as therapeutic targets for ADI PC. Compared to TC1, ADI-TC1-T5 cells showed a significant upregulation of AK-A and AK-B and their downstream regulators, survivin and phosphorylated-histone H3. Enhanced sensitivity of TC1-T5 to AK inhibitor VX680 functionally validated this and together with docetaxel led to enhanced efficacy which correlated with implication of AK-A/B in development of docetaxel-resistance. Thus, TRAMP model now represents ADI-PC that can grow in the bone, lungs and in the prostate; a significant step towards a well rounded preclinical model with greater clinical relevance.
14

Investigatiing the Role of the Wild-Type Ras Isoforms in KRas-driven Cancer

Weyandt, Jamie Dawn January 2015 (has links)
<p>The RAS family is a group of small GTPases that can become constitutively activated by point mutations that are found in about 30% of all cancer patients. There are three well-characterized RAS family members: HRAS, NRAS, and KRAS, the latter of which is alternatively spliced at the C-terminus into KRAS4A and KRAS4B. The RAS proteins are all nearly identical at their N-termini and core effector binding domains, but have divergent C-terminal membrane-binding regions that impart different subcellular localization and subtle differences in signaling. Although the role of constitutively activated oncogenic RAS has been well established to play a role in cancer, recent work has suggested that wild-type RAS signaling may also be important in tumorigenesis. Wild-type RAS proteins have been shown to be activated in the presence of oncogenic KRAS. However, the consequences of this activation are context-dependent, as signaling through the wild-type RAS proteins has been shown to both suppress neoplastic growth and promote tumorigenesis under different circumstances.</p><p>I sought to investigate the role of the wild-type RAS proteins in two clinically –relevant models of cancer: pancreatic, the type of cancer most frequently associated with KRAS mutations, and lung cancer, the cancer in which KRAS mutations affect the highest number of patients. First, I tested whether a loss of wild type Hras altered tumorigenesis in a mouse model of pancreatic cancer driven by oncogenic Kras. Hras homozygous null mice (Hras-/- ) exhibited more precancerous lesions of the pancreas as well as more off-target skin papillomas compared to their wild type counterparts, indicating that Hras suppresses early Kras-driven pancreatic tumorigenesis. Loss of Hras also reduced the survival of mice engineered to develop aggressive pancreatic cancer by the additional disruption of one allele of the tumor suppressor p53 (Trp53R172H/+). However, this survival advantage was lost when both alleles of Trp53 were mutated, suggesting that wild-type HRas inhibits tumorigenesis in a p53-dependant manner. </p><p>Next, I investigated the role that wild-type Hras and Nras play in a chemical carcinogen-induced model of lung cancer. In mice treated with urethane, a carcinogen that induces Kras-mutation positive lung lesions, Hras-/ mice once again developed more tumors than wild-type mice. Interestingly, however, this effect was not observed in mice lacking wild-type Nras. Mice lacking both Hras and Nras alleles developed approximately the same number of tumors as Hras-/- mice, thus the additional loss of Nras does not appear to enhance the tumor-promoting effects of loss of Hras. In summary, signaling through wild-type Hras, but not Nras, suppresses tumorigenesis in a carcinogen-induced model of lung cancer.</p><p>The tumor-suppressive effects of wild-type Ras signaling were traced to the earliest stages of pancreatic tumorigenesis, suggesting that wild-type Ras signaling may suppress tumorigenesis as early as the time of initiation. These findings suggest that differences in expression of the wild-type Ras isoforms could potentially play a role in an individual’s predisposition for developing cancer upon oncogenic insult.</p> / Dissertation
15

The Contribution of Cytomegalovirus Infection to Immune Senescence Is Set by the Infectious Dose

Redeker, Anke, Remmerswaal, Ester B. M., van der Gracht, Esmé T. I., Welten, Suzanne P. M., Höllt, Thomas, Koning, Frits, Cicin-Sain, Luka, Nikolich-Žugich, Janko, ten Berge, Ineke J. M., van Lier, René A. W., van Unen, Vincent, Arens, Ramon 10 January 2018 (has links)
The relationship between human cytomegalovirus (HCMV) infections and accelerated immune senescence is controversial. Whereas some studies reported a CMV-associated impaired capacity to control heterologous infections at old age, other studies could not confirm this. We hypothesized that these discrepancies might relate to the variability in the infectious dose of CMV occurring in real life. Here, we investigated the influence of persistent CMV infection on immune perturbations and specifically addressed the role of the infectious dose on the contribution of CMV to accelerated immune senescence. We show in experimental mouse models that the degree of mouse CMV (MCMV)-specific memory CD8(+) T cell accumulation and the phenotypic T cell profile are directly influenced by the infectious dose, and data on HCMV-specific T cells indicate a similar connection. Detailed cluster analysis of the memory CD8(+) T cell development showed that high-dose infection causes a differentiation pathway that progresses faster throughout the life span of the host, suggesting a virus-host balance that is influenced by aging and infectious dose. Importantly, short-term MCMV infection in adult mice is not disadvantageous for heterologous superinfection with lymphocytic choriomeningitis virus (LCMV). However, following long-term CMV infection the strength of the CD8(+) T cell immunity to LCMV superinfection was affected by the initial CMV infectious dose, wherein a high infectious dose was found to be a prerequisite for impaired heterologous immunity. Altogether our results underscore the importance of stratification based on the size and differentiation of the CMV-specific memory T cell pools for the impact on immune senescence, and indicate that reduction of the latent/lytic viral load can be beneficial to diminish CMV-associated immune senescence.
16

The role of Secretory Leukocyte Protease Inhibitor (SLPI) in progranulin regulation and neurodegeneration

Toulson, Gregory January 2013 (has links)
Frontotemporal lobar degeneration (FTLD) is an early onset neurodegenerative disorder which selectively destroys frontal and temporal cortical neurones. The resulting damage leads to a range of language and behavioural deficits, however, episodic memory is generally maintained. Around 10% of FTLD cases are caused by progranulin gene mutations that lead to haploinsufficiency and reduced expression of progranulin. Secretory leukocyte protease inhibitor (SLPI) has been shown to have a key protective effect over progranulin, inhibiting enzymatic cleavage by neutrophil elastase. Previous work demonstrating this role of SLPI is largely from in vitro studies and scenarios with above-physiological SLPI concentrations. To ascertain a role for endogenous SLPI in the regulation of progranulin a murine SLPI knockout model was used and tonic progranulin measurements taken. No change in circulating progranulin levels were seen in SLPI null mice (at 6, 12 or 20 months of age) when compared to non-transgenic controls, though significant differences were observed between male and female SLPI null animals. Similarly, tissue (brain and lung) levels of progranulin were comparable between wild-type and SLPI null mice, despite the presence of active neutrophil elastase. Behavioural analysis of SLPI null mice revealed no major phenotype when compared to wild-type, over a range of behavioural tests. However primary neuronal cultures taken from SLPI null mice did display an elevated progranulin response to bacterial lipopolysaccharide (LPS). These data suggest that, although SLPI may play a role in progranulin regulation during an inflammatory event, it is unlikely to play a major role in progranulin regulation under basal conditions, as reported previously. Therefore under disease conditions regulation of extracellular progranulin is likely through other modulatory factors that have yet to be described.
17

Suivi thérapeutique d'un traitement par photothérapie dynamique sur des modèles murins de rétinoblastome / Therapeutic Follow-up of Photodynamic Therapy Treatment of Retinoblastoma Murine Models

Lemaitre, Stéphanie 27 November 2017 (has links)
Le rétinoblastome est la tumeur intraoculaire primitive la plus fréquente de l’enfant. Les traitements actuels du rétinoblastome sont associés à de nombreux effets secondaires. De nouvelles approches thérapeutiques (telles que la photothérapie dynamique [PDT] ou les injections intra-vitréennes [IVT] de chimiothérapies) doivent donc être évaluées sur des modèles animaux, en vue d’une éventuelle application clinique.Dans cette thèse nous avons tout d’abord caractérisé un modèle murin obtenu par xénogreffe orthotopique de cellules issues de rétinoblastomes humains. Nous avons montré que la croissance tumorale intraoculaire est possible dans des lignées de souris immunodéficientes (Swiss-nude et SCID [severe combined immunodeficiency]) et dans une lignée immunocompétente (B6Albino). En raison du taux de prise tumorale insuffisant (entre 28.4% et 68.8% selon les lignées de souris utilisées) et des complications oculaires liées à l’injection orthotopique de cellules tumorales (cataracte, décollement de rétine chronique), les tests thérapeutiques (PDT et IVT de chimiothérapies) ont ensuite été réalisés sur un modèle murin transgénique de rétinoblastome (LHBetaTag).En vue du traitement par PDT, une étude de biodistribution par IRM (imagerie par résonance magnétique) du photosensibilisateur (PS, DEG-mannose) couplé au manganèse et une étude par dosage du PS ont été réalisées. Elles ont toutes les deux montré que l’illumination de la tumeur doit être réalisée 24 à 48h après l’administration intra-péritonéale du PS (ce qui correspond au « drug-to-light interval » du traitement par PDT). En utilisant ces paramètres, le traitement par PDT a été efficace sur les tumeurs rétiniennes des souris LHBetaTag. Au niveau de la zone traitée par PDT, il y a ainsi eu 91.7% de cicatrices choriorétiniennes en OCT (optical coherence tomography) pour un « drug-to-light interval » de 24h et 100% de cicatrices choriorétiniennes pour un « drug-to-light interval » de 48h. La rétine non tumorale située en dehors de la zone traitée par PDT avait un aspect normal en histologie, ce qui est en faveur d’une absence de toxicité rétinienne de la PDT sur les tissus sains. Le traitement par laser seul n’a pas eu d’effet anti-tumoral.Des traitements par IVT de chimiothérapies ont aussi été évalués sur les tumeurs rétiniennes des souris LHBetaTag. Les molécules utilisées ont été le melphalan, le carboplatine et le topotecan, administrées en mono ou en bithérapie. Nous avons montré que 4 IVT hebdomadaires de carboplatine à la dose de 1.5 µg ont la meilleure efficacité anti-tumorale (83.3% d’yeux sans masse tumorale en histologie) pour une toxicité rétinienne faible (21.4% d’yeux où il y a eu une diminution de l’épaisseur de la rétine non tumorale en OCT au cours du suivi in vivo). Le carboplatine semble donc être une alternative intéressante au melphalan, qui est actuellement la molécule la plus utilisée en clinique pour les IVT dans le rétinoblastome mais qui est associé à une toxicité rétinienne importante.En conclusion, ces études précliniques réalisées sur un modèle murin de rétinoblastome (LHBetaTag) montrent que la PDT est envisageable pour le traitement des tumeurs rétiniennes dans le rétinoblastome humain. Les IVT de carboplatine sont une perspective pour le traitement des flocons intra-vitréens dans cette maladie. Des évaluations fonctionnelles (électrorétinogramme, étude du réflexe optocinétique) devront cependant être réalisées chez la souris avant un éventuel passage en clinique afin de mieux caractériser une éventuelle toxicité rétinienne de ces traitements. / Retinoblastoma is the most common primary intraocular malignancy in children. Current retinoblastoma treatments have many adverse effects. New therapeutic approaches (like photodynamic therapy [PDT] or intravitreal injections [IVT] of chemotherapy) must therefore be evaluated on animal models, before a clinical application.In this thesis we first characterized an orthotopic xenograft murine model obtained with human retinoblastoma cells. We showed that intraocular tumor growth can be achieved in immunodeficient mouse strains (Swiss-nude and SCID [severe combined immunodeficiency]) and in an immunocompetent strain (B6Albino). Due to insufficient tumor engraftment rates (between 28.4 and 68.8% depending on the mouse strains) and to ocular complications after the injection of tumor cells (cataract, chronic retinal detachment) the treatments (PDT and IVT of chemotherapy) were performed on a transgenic retinoblastoma mouse model (LHBetaTag).In order to perform PDT, an MRI study (magnetic resonance imaging) of the photosensitizer (PS, DEG-mannose) coupled with manganese and a biodistribution study based on the dosage of the PS were performed. Both studies showed that the illumination of the tumor should be performed between 24 and 48h after the intraperitoneal injection of the PS (which corresponds to the “drug-to-light interval” of PDT). Using these parameters, PDT was effective on the retinal tumors of LHBetaTag mice. In the area treated with PDT we found 91.7% chorioretinal scars on OCT (optical coherence tomography) with a “drug-to-light interval” of 24h, and 100% chorioretinal scars with a “drug-to-light interval” of 48h. The retina outside the treated area had a normal aspect on histology, showing that PDT is not toxic on healthy tissues. Laser treatment alone had no anti-tumor effect.IVT of chemotherapy were also performed in LHBetaTag mice. We used melphalan, carboplatin and topotecan, alone or in association. We showed that 4 weekly IVT of carboplatin at the dose of 1.5 µg had the best anti-tumor effect (83.3% of eyes had no tumor mass on histology) and little retinal toxicity (21.4% of eyes had diminished retinal thickness on OCT). Carboplatin seems an interesting alternative to melphalan which is currently the most commonly used chemotherapy for IVT (but has a retinal toxicity).In conclusion, these preclinical studies on a retinoblastoma mouse model (LHBetaTag) show that PDT could be used to treat retinal tumors in human retinoblastoma. IVT of carboplatin could be used to treat vitreous seeds in this disease. Functional tests (electroretinogram, optokinetic reflex) should be performed in mice in order to evaluate more precisely the retinal toxicity of these treatments.
18

Pathological and molecular profiling in hypertension-induced glomerular injury

Belghasem, Mostafa 03 November 2015 (has links)
The increased prevalence of chronic kidney disease (CKD) has become a major global health burden. This increase in CKD burden parallels the increase in hypertension prevalence. In addition, increasing evidence suggest that genetics play a strong role in the susceptibility for renal disease. Inbred mouse strains C57BL/6 and 129S6SvEv differ in their susceptibility to kidney disease when subjected to hypertension using the DOCA/salt uninephrectomy model of hypertension. Similar to others, we found the 129S6SvEv mice to be susceptible to develop severe glomerulosclerosis, whereas the C57BL/6 mice are comparatively resistant. To identify new candidate genes that are involved in the pathogenesis of glomerular disease, we used microarray technology to compare the glomerular transcriptome of both strains and determine changes in glomerular gene expression when subjected to the DOCA/salt uninephrectomy model of systemic hypertension. This approach was accompanied with ultrastructural analysis and glomerular stiffness measurements to identify corresponding structural changes. Here, we have identified novel genes associated with strain differences and hypertension, and we used immunohistochemistry to validate their expression in podocytes and glomerular arterioles in murine and human kidneys. The increased understanding of the molecular mechanisms underlying hypertension-associated podocyte injury and glomerular damage which will result from these studies, will ultimately lead to identification of novel pharmacologic targets or therapeutic strategies for patients with hypertension and renal disease. / 2017-11-02T00:00:00Z
19

THE IMPACT OF THE HDL RECEPTOR, SR-B1, ON CARDIOVASCULAR PHENOTYPES IN THE MOUSE.

Fuller, Mark January 2015 (has links)
Atherosclerosis is a major cause of cardiovascular disease, which is among the leading causes of death globally. Elevated plasma concentration of low density lipoprotein (LDL) cholesterol is a risk factor for atherosclerosis, while a high plasma level of high density lipoprotein (HDL) cholesterol is considered protective. Uptake of HDL cholesterol by hepatocytes during reverse cholesterol transport, and athero-protective signaling induced by HDL in other cells are mediated by the scavenger receptor class B, type 1 (SR-B1). SR-B1 deficiency in mice that are susceptible to atherosclerosis results in exacerbation of atherosclerosis, and in mice with mutations in apolipoprotein E (apoE), renders mice uniquely susceptible to occlusive coronary artery (CA) atherosclerosis and myocardial infarction. In this thesis, the impact of a lack of SR-B1 on the development of atherosclerosis is characterized in otherwise wild type mice, and in mice that also lack the LDL receptor (LDLR). We demonstrate that after prolonged feeding of a high fat, high cholesterol cholate-containing diet, SR-B1 knockout (KO) mice develop similar levels of diet-induced atherosclerosis to LDLR KO mice and apoE KO mice in traditionally susceptible arteries, and significantly more atherosclerosis in arteries that are typically resistant to plaque development, such as the CAs. SR-B1/LDLR double KO mice develop extensive occlusive CA atherosclerosis accompanied by myocardial infarction, and exhibit reduced iv survival compared to LDLR KO control mice when fed a variety of atherogenic diets. In both SR-B1 single KO and SR-BI/LDLR dKO mice, CA atherosclerosis is accompanied by splenomegaly, elevated numbers of circulating leukocytes and increased expression of VCAM-1 in CA endothelium. Interestingly, removal of the spleen has no effect on circulating leukocyte numbers or atherosclerosis in SR-B1/LDLR dKO mice, suggesting the enlarged spleens in SR-B1 deficient mice do not influence atherosclerosis in these animals. We conclude that SR-B1 is important for the protection against atherosclerosis in mice, particularly in CAs. This is likely through roles in multiple cell types including hepatocytes, endothelial cells and bone marrow-derived cells. Future studies should focus on evaluating the impact of cell-specific SR-B1 activity in different cell types on murine atherosclerotic CA disease. / Thesis / Doctor of Philosophy (PhD)
20

INVESTIGATING THE EFFECTS OF HYPERGLYCEMIA ON THE VASA VASORUM IN THE DEVELOPMENT OF ATHEROSCLEROSIS AND ESTABLISHMENT OF NOVEL MOUSE MODELS OF DIABETES / Effects of Hyperglycemia in Mouse Models of Atherosclerosis

Venegas Pino, Daniel January 2016 (has links)
The prevalence of diabetes is increasing rapidly around the world. People with diabetes are 2–4 times more likely to die from cerebro and cardio-vascular causes than people with no history of diabetes, even after controlling for other risk factors. Atherosclerosis, the underlying cause of most cardiovascular disease (CVD), is accelerated in people with diabetes, but several clinical trials have questioned the efficacy of glucose lowering therapies. A better understanding of the molecular pathways by which diabetes accelerates atherosclerosis will expand the scope of current targets and strategies for more effective therapies. In this thesis we investigate a novel mechanism and establish and characterize new hyperglycemic mouse models for the study of diabetic atherosclerosis. Firstly, we investigate the effects of hyperglycemia on the vasa vasorum, the microvascular network that surrounds and supplies large vessels, and correlate those effects to the development of atherosclerosis. In normoglycemic ApoE-/- mice, the vasa vasorum expands as atherosclerotic lesions grow. However, in hyperglycemic ApoE-/- mice there is no significant neovascularization of the vasa vasorum despite the enhanced atherosclerotic development. We hypothesize that the ability of hyperglycemia to disrupt vasa vasorum neovascularization may promote the development and progression of atherosclerosis in diabetes. Secondly, we establish, characterize and manipulate a new model of hyperglycemia-induced atherosclerosis: the ApoE-/-:Ins2+/Akita mouse. We describe sex-specific differences of the ApoE-/-:Ins2+/Akita mouse model. Male ApoE-/-:Ins2+/Akita mice develop chronic hyperglycemia and accelerated atherosclerosis. Castration slows atherosclerosis in ApoE-/-:Ins2+/Akita mice but enhances it in normoglycemic controls. Female ApoE-/-:Ins2+/Akita mice are only transiently hyperglycemic but still present with accelerated atherosclerosis. Ovariectomized ApoE-/-:Ins2+/Akita mice are chronically hyperglycemic and show indications of advanced atherosclerosis. Lastly, we investigate the effects of a western-type diet on the hyperglycemic ApoE-/-:Ins2+/Akita mice. We demonstrate the pernicious phenotype of the mice leading to a significantly shortened lifespan correlated with massive atherosclerosis that extends to the aortic sinus, ascending and descending aorta, brachiocephalic artery and coronary arteries. In conclusion we provide insights for a new mechanism by which hyperglycemia may accelerate atherosclerosis and possible role of the vasa vasorum in the progression of atherosclerosis in hyperglycemic mice. We also establish new mouse models that illuminate the action of sex hormones on pancreatic beta-cell function and the vasculature. These models will provide a test bed to further study sex hormone effects, as well as the diabetic pathways that promote atherosclerosis. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0597 seconds