• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 42
  • 37
  • 13
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 345
  • 345
  • 345
  • 72
  • 69
  • 48
  • 48
  • 47
  • 46
  • 43
  • 39
  • 38
  • 34
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Multi-objective optimisation methods applied to complex engineering systems

Oliver, John M. January 2014 (has links)
This research proposes, implements and analyses a novel framework for multiobjective optimisation through evolutionary computing aimed at, but not restricted to, real-world problems in the engineering design domain. Evolutionary algorithms have been used to tackle a variety of non-linear multiobjective optimisation problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the number of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimising evolutionary algorithm framework, incorporating a genetic algorithm, that uses self-adaptive mutation and crossover in an attempt to avoid such problems, and which has been benchmarked against both standard optimisation test problems in the literature and a real-world airfoil optimisation case. For this last case, the minimisation of drag and maximisation of lift coefficients of a well documented standard airfoil, the framework is integrated with a freeform deformation tool to manage the changes to the section geometry, and XFoil, a tool which evaluates the airfoil in terms of its aerodynamic efficiency. The performance of the framework on this problem is compared with those of two other heuristic MOO algorithms known to perform well, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this framework achieves better or at least no worse convergence. The framework of this research is then considered as a candidate for smart (electricity) grid optimisation. Power networks can be improved in both technical and economical terms by the inclusion of distributed generation which may include renewable energy sources. The essential problem in national power networks is that of power flow and in particular, optimal power flow calculations of alternating (or possibly, direct) current. The aims of this work are to propose and investigate a method to assist in the determination of the composition of optimal or high-performing power networks in terms of the type, number and location of the distributed generators, and to analyse the multi-dimensional results of the evolutionary computation component in order to reveal relationships between the network design vector elements and to identify possible further methods of improving models in future work. The results indicate that the method used is a feasible one for the achievement of these goals, and also for determining optimal flow capacities of transmission lines connecting the bus bars in the network.
142

Procedimento híbrido envolvendo os métodos primal-dual de pontos interiores e branch and bound em problemas multiobjetivo de aproveitamento de resíduos de cana-de-açúcar

Homem, Thiago Pedro Donadon [UNESP] 24 August 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-08-24Bitstream added on 2014-06-13T18:07:18Z : No. of bitstreams: 1 homem_tpd_me_bauru.pdf: 3557697 bytes, checksum: a1fa6fe9ed118fd4c4f8be6400b6d78f (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O Brasil é o maior produtor de cana-de-açúcar do mundo. Mas, existe uma grande preocupação com o sistema de colheita utilizado nesta cultura, pois é prática comum a colheita manual com a pré-queima do palhiço. Autoridades brasileiras têm aprovado leis proibindo a queimada nos canaviais. Entretanto, a colheita mecanizada, com cana-de-açúcar crua, cria novos problemas com a permanência do resíduo no solo. Assim, muitos estudos têm sido propostos para o uso deste resíduo para geração de energia. A maior dificuldade no uso desta biomassa está no custo de coletar e transferir o resíduo, do campo para o centro de processamento. Para análise da viabilidade deste sistema há a necessidade de um estudo do balanço de energia envolvido, devido ao grande número de maquinário utilizado no processo. O objetivo deste trabalho é investigar modelos matemáticos que auxiliem na escolha das variedades de cana-de-açúcar a serem implantadas, de forma a minimizar o custo de coleta da biomassa residual e avaliar o balanço de energia gerado, adicionado restrições sobre a produção de sacarose e limitações da área para plantio e considerando as distâncias entre os talhões e o centro de processamento. Para isto, técnicas de programação linear e inteira 0-1 foram utilizadas. A busca de soluções para problemas de programação inteira com grande número de variáveis e restrições é de difícil resolução, mas os resultados apresentados mostram que a utilização d eum procedimento híbrido envolvendo o método Primal-Dual de Pontos Interiores e o método Branch and Bound promove uma boa performance computacional, apresentando soluções confiáveis. Assim, o uso deste procedimento é viável para o auxílio na seleção de variedades, otimizando o custo do uso da biomassa residual de colheita ou o balanço de geração de energia / It is that Brazil is the world's largest sugar cane producer. But there is great concern about the harvesting system used in this culture, because it is a common practice to burn the straw before the barvest. Brazilian authorities have approved laws prohibiting the burning in the sugar cane fields. However, with mechanized harvesting of sugar cane raw creates new problems with the accumulation of the waste biomass in the ground. Many studies have been proposed to use this waste for energy generation. The greatest difficulty to use this biomass is in the cost of collect and transfer the residues from the field to the the processing center. To analyze the feasibility of this system, it is necessary a study of the involved energy balance, because of the large number of machines in the process. The aim of this study is to investigate mathematical models that help on choosing varieties of sugar cane to be planted, to minimize the cost of collect of residual biomass and to analyze the balance of power generated, adding restrictions on the production on the production of sucrose and limitations on the area for planting and considering the distances among the plots the processing center. To this, techniques of 0-1 integer linear programming were used. The search for solutions to integer programming problems with many variables and constraints its very hard, but the results show that the use of a hybrid procedure involving the Primal-Dual Interior Point method and Branch and Bound method promotes good performance computing, with reliable solutions. Thus, the use of this procedure is feasible to help on select of varieties, optimizing the cost of collect of the waste biomass or the the balance of power generation
143

Supply Chain optimization with sustainability criteria : A focus on inventory models / Optimisation de la chaine logistique avec prise en compte de critères de développement durable : Un focus sur les modèles de gestion de stock

Bouchery, Yann 27 November 2012 (has links)
Les problématiques liées au développement durable modifient fortement les habitudes des consommateurs ainsi que les stratégies des entreprises. Dans ce contexte, l’optimisation de la chaîne logistique avec prise en compte de critères de développement durable devient un défi majeur. Néanmoins, les travaux scientifiques basés sur des modèles quantitatifs sont encore rares. Nous contribuons donc à cette littérature en revisitant des modèles classiques d’optimisation de gestion de stock en prenant en compte des critères de développement durable. Nous sommes convaincus que les différents aspects du développement durable ne devraient pas être réduits à un seul objectif. Nous proposons donc une approche basée sur l’optimisation multi-objectif pour revisiter les modèles economic order quantity en mono- et multi-échelon. Ces modèles sont ensuite utilisés pour analyser les impacts de la coopération client-fournisseur ou de l’investissement dans des technologies vertes sur les performances de la chaîne logistique. Par ailleurs, les entreprises deviennent de plus en plus proactives vis-à-vis du développement durable. Nous proposons donc d’utiliser des méthodes d’aide multicritère à la décision au lieu de considérer le développement durable comme une contrainte dans les modèles. Dans cette optique, l’entreprise peut fournir des informations sur les compromis désirables entre les dimensions économiques, environnementales et sociales du développement durable afin d’obtenir rapidement une solution satisfaisante. / Sustainability concerns are increasingly shaping customers’ behavior as well as companies’ strategy. In this context, optimizing the supply chain with sustainability considerations is becoming a critical issue. However, work with quantitative models is still scarce. Our research contributes by revisiting classical inventory models taking sustainability concerns into account. We believe that reducing all aspects of sustainable development to a single objective is not desirable. We thus reformulate single and multi-echelon economic order quantity models as multi-objective problems. These models are then used to study several options such as buyer-supplier coordination or green technology investment. We also consider that firms are becoming increasingly proactive with respect to sustainability. We thus propose to apply multiple criteria decision aid techniques instead of considering sustainability as a constraint. In this sense, the firm may provide preference information about economic, environmental and social tradeoffs and quickly identify a satisfactory solution.
144

Otimização de parametros de projeto de sistemas mecanicos atraves de algoritmo genetico multi-objetivos / Optimization in design parameters of mechanical systems using multi-objective genetic algorithm

Escobar, Roberto Luiz 16 February 2007 (has links)
Orientador: Katia Lucchesi Cavalca / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-08T21:19:55Z (GMT). No. of bitstreams: 1 Escobar_RobertoLuiz_M.pdf: 2961640 bytes, checksum: 516985920427d6083c04c1c5a22d6470 (MD5) Previous issue date: 2007 / Resumo: Os sistemas mecânicos são projetados para desempenhar funções específicas, e por essa razão as suas funções devem ser medidas para garantir seu desempenho dentro de uma certa precisão ou tolerância. A grande complexidade em se projetar e analisar novos projetos é a inserção de novas tecnologias, que envolvem aspectos multidisciplinares. Assim, o desenvolvimento e melhoria de projetos e produtos colocam o engenheiro projetista frente às diversas fontes de variabilidade, como por exemplo, as propriedades dos materiais, condições operacionais e ambientais e incertezas nas suposições feitas sobre seu funcionamento. Em termos de modelagem matemática, as aproximações inerentes e hipóteses feitas durante a concepção do sistema, conduzem normalmente a diferentes respostas obtidas através de simulações e/ou medidas experimentais. Dessa forma, em uma fase anterior à modelagem matemática,durante a concepção do sistema ou produto, as aplicações de ferramentas estatísticas e métodos de otimização podem fornecer estimativas sobre faixas de valores ou valores ótimos para parâmetros significativos de projeto, dentro do espaço experimental estudado. Esse tipo de abordagem estatística teve sua fundamentação teórica durante as décadas de 20 e 30 por Fisher, com a aplicação da teoria estatística sob diversos aspectos, como por exemplo: testes de hipóteses, estimativa de parâmetros, seleção de modelos, planejamento experimental e, mais tarde, no controle e melhoria de processos e produtos. Assim, este trabalho propõe um procedimento de estudo e otimização, integrando a teoria de planejamento experimental, a metodologia da superfície de resposta e otimização multi-objetivos através de algoritmos genéticos, para se obter a otimização dos parâmetros de projeto de componentes mecânicos. Em específico, foram utilizados dados de um sistema rotor-mancal e o estudo implica em minimizar as amplitudes no domínio da freqüência. Outro objetivo deste trabalho, foi desenvolver um programa para otimização multi-objetivos através de algoritmos genéticos / Abstract: The mechanical systems are designed to be applied to any specific situations, and in this waytheir features should be measured to guarantee confidence to the systems. Their development and analysis expose the designer to a series of unknown parameters from several sources such as material properties, environmental and operational conditions. In terms of mathematical modeling, the inherent approximation and hypotheses made during system conception lead to different responses obtained by simulations and/or experimental measurements. So, in a previous phase of mathematical modeling, during the design analysis, the application of statistical tools and optimization methods is possible to estimate the values and/or ranges of the critical design parameters inside an experimental space. The connection between optimization and statistical data back at least to the early part of the 20th century and encompasses many aspects of applied and theoretical statistics, including hypothesis testing, parameter estimation, model selection, design of experiments and process and product control. So, this work proposes a link between theory of design of experiments, response surface methodology and multi-objective optimization using genetic algorithms, in order to optimize parameters for mechanical components. This study makes possible to verify the application of multi-objective optimization using genetic algorithms in design parameters and optimize them. A rotor-bearing system was used and amplitude in frequency domain was minimized. An experimental software for multi-objective optimization using genetic algorithm was developed. / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
145

Combinação de modelos de previsão de séries temporais por meio de otimização multiobjetivo para alocação eficiente de recursos na nuvem / Combination of time series forecasting models through multi-objective optimization for efficient allocation of resources in the cloud

Valter Rogério Messias 16 May 2016 (has links)
Em um ambiente de computação em nuvem, as empresas têm a capacidade de alocar recursos de acordo com a demanda. No entanto, há um atraso que pode levar alguns minutos entre o pedido de um novo recurso e o mesmo estar pronto para uso. Por esse motivo, as técnicas reativas, que solicitam um novo recurso apenas quando o sistema atinge um determinado limiar de carga, não são adequadas para o processo de alocação de recursos. Para resolver esse problema, é necessário prever as requisições que chegam ao sistema, no próximo período de tempo, para alocar os recursos necessários antes que o sistema fique sobrecarregado. Existem vários modelos de previsão de séries temporais para calcular as previsões de carga de trabalho com base no histórico de dados de monitoramento. No entanto, é difícil saber qual é o melhor modelo de previsão a ser utilizado em cada caso. A tarefa se torna ainda mais complicada quando o usuário não tem muitos dados históricos a serem analisados. A maioria dos trabalhos relacionados, considera apenas modelos de previsão isolados para avaliar os resultados. Outros trabalhos propõem uma abordagem que seleciona modelos de previsão adequados para um determinado contexto. Mas, neste caso, é necessário ter uma quantidade significativa de dados para treinar o classificador. Além disso, a melhor solução pode não ser um modelo específico, mas sim uma combinação de modelos. Neste trabalho propomos um método de previsão adaptativo, usando técnicas de otimização multiobjetivo, para combinar modelos de previsão de séries temporais. O nosso método não requer uma fase prévia de treinamento, uma vez que se adapta constantemente a medida em que os dados chegam ao sistema. Para avaliar a nossa proposta usamos quatro logs extraídos de servidores reais. Os resultados mostram que a nossa proposta frequentemente converge para o melhor resultado, e é suficientemente genérica para se adaptar a diferentes tipos de séries temporais. / In a cloud computing environment, companies have the ability to allocate resources according to demand. However, there is a delay that may take minutes between the request for a new resource and it is ready for using. The reactive techniques, which request a new resource only when the system reaches a certain load threshold, are not suitable for the resource allocation process. To address this problem, it is necessary to predict requests that arrive at the system in the next period of time to allocate the necessary resources, before the system becomes overloaded. There are several time-series forecasting models to calculate the workload predictions based on history of monitoring data. However, it is difficult to know which is the best time series forecasting model to be used in each case. The work becomes even more complicated when the user does not have much historical data to be analyzed. Most related work considers only single methods to evaluate the results of the forecast. Other work propose an approach that selects suitable forecasting methods for a given context. But in this case, it is necessary to have a significant amount of data to train the classifier. Moreover, the best solution may not be a specific model, but rather a combination of models. In this work we propose an adaptive prediction method using multi-objective optimization techniques to combine time-series forecasting models. Our method does not require a previous phase of training, because it constantly adapts the extent to which the data is coming. To evaluate our proposal we use four logs extracted from real servers. The results show that our proposal often brings the best result, and is generic enough to adapt to various types of time series.
146

Controle preditivo de torque do motor de indução com otimização dos fatores de ponderação por algoritmo genético multiobjetivo / Multi-objective genetic algorithm optimization of predictive torque control weighting factors for induction motor drives

Paulo Roberto Ubaldo Guazzelli 20 February 2017 (has links)
Neste trabalho investiga-se a aplicação de um algoritmo genético multiobjetivo, ferramenta que se destaca por sua flexibilidade e interpretabilidade, na obtenção de fatores de ponderação para aplicação no controle preditivo de torque do motor de indução, ou Model Predictive Torque Control (MPTC). O MPTC busca minimizar a cada instante de atuação uma função custo que representa o sistema, destacando-se pela rápida resposta de torque, facilidade de incorporar restrições e ausência de modulador de tensão. No entanto, essa técnica apresenta fatores de ponderação em sua estrutura de cálculo que não dispõem de métodos analíticos de projeto. Utilizou-se o algoritmo genético de classificação nãodominada, ou Non-dominated Sorting Genectic Algorithm II (NSGA-II), projetado de forma a obter soluções que busquem o compromisso entre o desempenho dinâmico do motor, via minimização das oscilações de torque e fluxo, e a eficiência energética do sistema por meio da minimização da frequência média de chaveamento da eletrônica de potência. Resultados simulados e experimentais mostraram que o conjunto de soluções fornecido pelo NSGA-II é factível e contrapõe as oscilações de torque e de fluxo e a frequência média de chaveamento, cabendo à aplicação desejada a escolha da solução. Com isso, tem-se uma ferramenta de projeto dos fatores de peso do MPTC capaz de incorporar restrições e ajustar vários fatores ao mesmo tempo. / This work investigates the application of a multi-objective genetic algorithm to obtain a set of weighting factors suitable for use in Model Predictive Torque Control (MPTC) of a induction motor variable speed drive. MPTC approach aims at minimizing a cost function at each step, and is highlighted for its fast torque response, facility to incorporate system constraints and the absence of voltage modulators. Nevertheless, MPTC structure presents weighting factors in the cost function which lack of an analytical design procedure. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was designed for a trade-off between torque and flux ripples minimization and minimization of the average switching frequency of the system. Simulated and experimental results showed NSGA-II offered a Pareto set of feasible solutions, so that torque ripple, flux ripple or average switching frequency can be minimized, depending on the solution chosen according to project demand. Thereby, there is a project tool for MPTC weighting factors able to adjust several factor at the same time, incorporating desired restrictions.
147

Contribution à la conception énergétique de quartiers : simulation, optimisation et aide à la décision / Contribution for district energy system design : simulation, optimization and decision support

Perez, Nicolas 03 October 2017 (has links)
L’intégration de la recherche d’efficacité énergétique aux projets d’aménagement urbain est essentielle au vu du contexte actuel de transition énergétique et environnementale. Dans le but de réduire l’empreinte énergétique d’un quartier dès la phase de conception, un ensemble de contributions a été réalisé afin d’accompagner les aménageurs dans cette démarche. La plateforme de simulation DIMOSIM (DIstrict MOdeller and SIMulator) a été développée pour modéliser et simuler dynamiquement les flux énergétiques d’un quartier implanté au sein de son environnement urbain. La conception est optimisée à l’aide d’une procédure multiobjectif combinant les aspects énergétiques, économiques et environnementaux pour garantir la meilleure performance globale. Cette approche transversale est multi-étagée et intègre l’algorithme génétique NSGA-II afin de s’adapter aux spécificités du problème. La sélection de la solution préférentielle est ensuite facilitée par l’utilisation d’une méthode d’analyse multicritère de surclassement qui a été conçue dans le but de fournir une évaluation détaillée des différents concepts : la méthode ATLAS (Assistance TooL for decision support to Assess and Sort). Enfin, la procédure complète d’accompagnement a été appliquée à des projets de conception d’écoquartier pour en valider le fonctionnement mais également pour fournir l’aide à la décision nécessaire aux décideurs. / The integration of the research of energy efficiency into urban development projects is essential in the current context of energy and environmental transition. In order to reduce the energy footprint of a district already starting from the design phase, a set of contributions was elaborated to support the planners in this process. The DIMOSIM simulation platform (DIstrict MOdeller and SIMulator) has been developed to dynamically model and simulate the energy flows of a district located within its urban environment. The design of the district is optimized using a multi-objective procedure combining energy, economic and environmental aspects to ensure the best overall performance. A cross-cutting, multi-level approach integrating the NSGA-II genetic algorithm was implemented in order to adapt the procedure to the specificities of the problem. The selection of the preferred solution is then facilitated by the use of a multicriteria analysis method which was developed to provide a detailed evaluation of the different concepts : the outranking method ATLAS (Assistance TooL for decision support to assessment And Sort). Finally, the complete procedure dedicated to the district energy system design was applied to eco-district projects in order to validate its correct operation and also to provide the necessary support to decision-makers.
148

An Energy and Cost Performance Optimization Platform for Commercial Building System Design

Xu, Weili 01 May 2017 (has links)
Energy and cost performance optimization for commercial building system design is growing in popularity, but it is often criticized for its time consuming process. Moreover, the current process lacks integration, which not only affects time performance, but also investors’ confidence in the predicted performance of the generated design. Such barriers keep building owners and design teams from embracing life cycle cost consideration. This thesis proposes a computationally efficient design optimization platform to improve the time performance and to streamline the workflow in an integrated multi-objective building system design optimization process. First, building system cost estimation is typically completed through a building information model based quantity take-off process, which does not provide sufficient design decision support features in the design process. To remedy this issue, an automatic cost estimation framework that integrates EnergyPlus with an external database to perform building systems’ capital and operation costs is proposed. Optimization, typically used for building system design selection, requires a large amount of computational time. The optimization process evaluates building envelope, electrical and HVAC systems in an integrated system not only to explore the cost-saving potential from a single high performance system, but also the interrelated effects among different systems. An innovative optimization strategy that integrates machine learning techniques with a conventional evolutionary algorithm is proposed. This strategy can reduce run time and improve the quality of the solutions. Lastly, developing baseline energy models typically takes days or weeks depending on the scale of the design. An automated system for generating baseline energy model according to ANSI/ASHRAE/IESNA Standard 90.1 performance rating method is thus proposed to provide a quick appraisal of optimal designs in comparison with the baseline energy requirements. The main contribution of this thesis is the development of a new design optimization platform to expedite the conventional decision making process. The platform integrates three systems: (1) cost estimation, (2) optimization and (3) benchmark comparison for minimizing the first cost and energy operation costs. This allows designers to confidently select an optimal design with high performance building systems by making a comparison with the minimum energy baseline set by standards in the building industry. Two commercial buildings are selected as case studies to demonstrate the effectiveness of this platform. One building is the Center for Sustainable Landscapes in Pittsburgh, PA. This case study is used as a new construction project. With 54 million possible design solutions, the platform is able to identify optimal designs in four hours. Some of the design solutions not only save the operation costs by up to 23% compared to the ASHRAE baseline design, but also reduce the capital cost ranging from 5% to 23%. Also, compared with the ASHRAE baseline design, one design solution demonstrates that the high investment of a product, building integrative photovoltaic (BiPV) system, can be justified through the integrative design optimization approach by the lower operation costs (20%) as well as the lower capital cost (12%). The second building is the One Montgomery Plaza, a large office building in Norristown, PA. This case study focuses on using the platform for a retrofit project. The calibrated energy model requires one hour to complete the simulation. There are 4000 possible design solutions proposed and the platform is able to find the optimal design solution in around 50 hours. Similarly, the results indicate that up to 25% capital cost can be saved with $1.7 million less operation costs in 25 years, compare to the ASHRAE baseline design.
149

An Integrated Multi-Agent Framework for Optimizing Time, Cost and Environmental Impact of Construction Processes

Ozcan-Deniz, Gulbin 15 July 2011 (has links)
Environmentally conscious construction has received a significant amount of research attention during the last decades. Even though construction literature is rich in studies that emphasize the importance of environmental impact during the construction phase, most of the previous studies failed to combine environmental analysis with other project performance criteria in construction. This is mainly because most of the studies have overlooked the multi-objective nature of construction projects. In order to achieve environmentally conscious construction, multi-objectives and their relationships need to be successfully analyzed in the complex construction environment. The complex construction system is composed of changing project conditions that have an impact on the relationship between time, cost and environmental impact (TCEI) of construction operations. Yet, this impact is still unknown by construction professionals. Studying this impact is vital to fulfill multiple project objectives and achieve environmentally conscious construction. This research proposes an analytical framework to analyze the impact of changing project conditions on the relationship of TCEI. This study includes green house gas (GHG) emissions as an environmental impact category. The methodology utilizes multi-agent systems, multi-objective optimization, analytical network process, and system dynamics tools to study the relationships of TCEI and support decision-making under the influence of project conditions. Life cycle assessment (LCA) is applied to the evaluation of environmental impact in terms of GHG. The mixed method approach allowed for the collection and analysis of qualitative and quantitative data. Structured interviews of professionals in the highway construction field were conducted to gain their perspectives in decision-making under the influence of certain project conditions, while the quantitative data were collected from the Florida Department of Transportation (FDOT) for highway resurfacing projects. The data collected were used to test the framework. The framework yielded statistically significant results in simulating project conditions and optimizing TCEI. The results showed that the change in project conditions had a significant impact on the TCEI optimal solutions. The correlation between TCEI suggested that they affected each other positively, but in different strengths. The findings of the study will assist contractors to visualize the impact of their decision on the relationship of TCEI.
150

Simulation-based optimization for production planning : integrating meta-heuristics, simulation and exact techniques to address the uncertainty and complexity of manufacturing systems

Diaz Leiva, Juan Esteban January 2016 (has links)
This doctoral thesis investigates the application of simulation-based optimization (SBO) as an alternative to conventional optimization techniques when the inherent uncertainty and complex features of real manufacturing systems need to be considered. Inspired by a real-world production planning setting, we provide a general formulation of the situation as an extended knapsack problem. We proceed by proposing a solution approach based on single and multi-objective SBO models, which use simulation to capture the uncertainty and complexity of the manufacturing system and employ meta-heuristic optimizers to search for near-optimal solutions. Moreover, we consider the design of matheuristic approaches that combine the advantages of population-based meta-heuristics with mathematical programming techniques. More specifically, we consider the integration of mathematical programming techniques during the initialization stage of the single and multi-objective approaches as well as during the actual search process. Using data collected from a manufacturing company, we provide evidence for the advantages of our approaches over conventional methods (integer linear programming and chance-constrained programming) and highlight the synergies resulting from the combination of simulation, meta-heuristics and mathematical programming methods. In the context of the same real-world problem, we also analyse different single and multi-objective SBO models for robust optimization. We demonstrate that the choice of robustness measure and the sample size used during fitness evaluation are crucial considerations in designing an effective multi-objective model.

Page generated in 0.1146 seconds