Spelling suggestions: "subject:"multiscale modeling"" "subject:"multifocale modeling""
41 |
On mechanical characterization and multi-scale modeling of Lithium-ion batteriesGupta, Priyank January 2021 (has links)
Over the last few decades, rechargeable lithium-ion batteries have been extensively used in portable instruments due to their high energy density and low self-discharge rate. Recently, lithium-ion batteries have emerged as the most promising candidate for electric vehicles and stationary energy storage. However, the maximum energy that lithium-ion batteries can store decreases as they are used because of various irreversible degradation mechanisms. Lithium-ion batteries are complex systems to understand, and various processes and their interactions are responsible for the degradation over time. The mechanical integrity and stability of the electrode layers inside the battery highly influence the battery performance, which makes it a necessity to characterize the mechanical behavior of electrode active layers for mesoscopic and macroscopic level modeling. In papers 1 and 2, the macroscopic mechanical behavior of active layers in the electrodes is investigated using U-shape bending tests. The active layers are porous and a different tensile and compressive behavior is captured by performing tests on single side coated dry specimens. The experiments reveal that the active layer is stiffer in compression as compared to tension. The compressive stiffness increases with bending strain whereas the tensile stiffness is almost independent of the bending strain. A very low value of modulus of the active layer (1-5 GPa) is measured in comparison to the metal foils (70-110 GPa) and the active particles (50-200 GPa) which shows that the electrode properties are governed majorly by the binders present in the active layers. The time-dependent and hysteresis effects are also captured by the method which circumvents the flaws of many other test methods presented in the literature. In paper 3, we present a multiscale homogenization method that couples mechanics and electrochemistry at the particle, electrode, and battery scales. The active materials of lithium-ion battery electrodes exhibit volume change during lithium intercalation or deintercalation. A lithium concentration gradient develops inside particles, as well as inside the active layer. The developed stress due to deformations further affects solid diffusion. We utilized models that have already been developed to couple particle and electrode layer levels. The mechanical coupling between the electrode and the battery level is achieved by homogenization of the layered battery using three-dimensional laminate theory. By application of the model, we demonstrate that the stresses on all considered scales can be predicted from the homogenized model. It is furthermore demonstrated that the effects of external battery loadings like battery stacks, casings, and external pressure can be captured by the model. The model can also capture the effect of various electrochemical cycling rates and mechanical parameters like layer thicknesses, stiffnesses, and swelling properties. The presented multi-scale model is fast, accurate and the efficiency of the method is demonstrated by comparisons to detailed finite element computations where each layer is individually modeled.
|
42 |
Hepatectomy-Induced Alterations in Hepatic Perfusion and Function: Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver FunctionChrist, Bruno, Collatz, Maximilian, Dahmen, Uta, Herrmann, Karl-Heinz, Höpfl, Sebastian, König, Matthias, Lambers, Lena, Marz, Manja, Meyer, Daria, Radde, Nicole, Reichenbach, Jürgen R., Ricken, Tim, Tautenhahn, Hans-Michael 31 January 2024 (has links)
Liver resection causes marked perfusion alterations in the liver remnant both on the
organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue
level). These changes in perfusion affect hepatic functions via direct alterations in blood
supply and drainage, followed by indirect changes of biomechanical tissue properties and
cellular function. Changes in blood flow impose compression, tension and shear forces
on the liver tissue. These forces are perceived by mechanosensors on parenchymal
and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions
as well as cellular signaling and metabolism. These interactions are key players in
tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their
dysregulation is associated with metabolic impairment of the liver eventually leading to
liver failure, a serious post-hepatectomy complication with high morbidity and mortality.
Though certain links are known, the overall functional change after liver surgery is
not understood due to complex feedback loops, non-linearities, spatial heterogeneities
and different time-scales of events. Computational modeling is a unique approach to
gain a better understanding of complex biomedical systems. This approach allows (i)
integration of heterogeneous data and knowledge on multiple scales into a consistent
view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses
based on predictive models, which must be validated experimentally and clinically. In
the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences;
and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review
the alterations of hepatic perfusion, biomechanical properties and function associated
with hepatectomy. Specifically, we provide an overview over the clinical problem,
preoperative diagnostics, functional imaging approaches, experimental approaches in
animal models, mechanoperception in the liver and impact on cellular metabolism, omics
approaches with a focus on transcriptomics, data integration and uncertainty analysis,
and computational modeling on multiple scales. Finally, we provide a perspective on how
multi-scale computational models, which couple perfusion changes to hepatic function,
could become part of clinical workflows to predict and optimize patient outcome after
complex liver surgery.
|
43 |
Stochastic and Multi-scale Modeling in Biology and ImmunologyTabbaa, Omar Peter January 2014 (has links)
No description available.
|
44 |
Adaptive Multi-level Model for Multi-scale Ductile Fracture Analysis in Heterogeneous Aluminum AlloysPaquet, Daniel January 2011 (has links)
No description available.
|
45 |
Multi-Scale Physics Based Modeling of Tire Rolling Resistance Considering AgingAlkandari, Waleed M. M. A. 22 March 2022 (has links)
Every moment of every day, at least hundreds of thousands of tires roll across a surface throughout the world. Tires are indisputably important in our daily life. The tire's primary component is rubber, which consumes energy when it rotates on a substrate due to the viscoelastic material's internal friction: a phenomenon referred to as rolling resistance. The interaction between the tire and the road surface is one of the most intricate and crucial phenomena in an automobile, because it is responsible for creating forces, moments, and deformation in the tire. Additionally, the road's roughness interacts with the tire and contributes significantly to its performance.
This dissertation aims to develop a comprehensive physics-based model for predicting the rolling resistance of a viscoelastic material due to dynamic deformations caused by tire rotation using an analytical approach. The model was developed by proposing a Gaussian wave function propagating across a tire circumference's viscoelastic medium. The wave function was selected to describe the displacement field produced by tire-road interaction. Additionally, by adopting a multi-scale modeling technique, the model was upgraded to estimate rolling resistance while taking into account surface roughness at all length scales, from macroscopic to microscopic. Additionally, another mathematical model was developed using the Fourier series approach to evaluate the steady-state stress response and energy dissipation for any harmonic and non-harmonic periodic strain signals.
Additionally, the dissertation strove to build a continuum damage mathematical model using a combined testing/modeling methodology to predict the aging of Styrene-Butadiene Rubber (SBR) after continuous exposure to the atmosphere. The obtained model was developed through the implementation of optimization techniques while formulating a mathematical model, which was then combined with a physics-based model to predict rolling resistance while taking into account rubber aging.
Calibration of hyperelastic and viscoelastic material models with testing data was performed using an optimization technique that yielded sufficient results. The results of all mathematical models obtained in this dissertation are reported subsequently. The stress response of a viscoelastic material under harmonic and non-harmonic strain input yielded good agreement with the FEA model obtained using ABAQUS. The rolling resistance behavior under various operating conditions, including texture and aging effects, was reported, and the results aligned with the experimental results found in the literature. / Doctor of Philosophy / Every moment of every day, hundreds of thousands of automobile tires roll across a surface somewhere in the world. A tire is an undeniably important part of everyday life. Rubber is the tire's main component, and when it rotates on a surface, it loses energy, resulting in a force that resists motion, known as rolling resistance force. The contact between the tire and the road is one of the most complicated and important phenomena that happens in an automobile because it is responsible for the vehicle's dynamic performance in areas such as acceleration, stopping distance, and stability. Another factor that affects tire and car performance and should be taken into account is the road's roughness.
This dissertation used an analytical method to come up with an accurate physics-based model for predicting the rolling resistance force of a viscoelastic material caused by tire rotation. The model was developed by assuming a Gaussian wave function would move across the tire circumference. Additionally, using a multi-scale modeling technique, the model was improved so that it could calculate the value of rolling resistance force considering surface roughness in all lengths of scale. This project also developed an additional mathematical model using the Fourier series method to determine how the stress response and energy dissipation would behave for any harmonic and nonharmonic periodic strain signals. Additionally, the dissertation presents the developing of a continuum damage mathematical model that could predict the material property of styrene-butadiene rubber (SBR) after being exposed to the air for a long time (i.e., aged). The model was developed based on experimental data and optimization techniques. This model was then combined with a physics-based model to predict rolling resistance force while taking aging into account. The material models were defined using an optimization method that yielded good results. The stress response of a viscoelastic material when it was subjected to harmonic and non-harmonic strain was in good agreement with the Finite Element Analysis (FEA) model made with ABAQUS. Rolling resistance behavior was observed, and the results were consistent with those found in the literature.
|
46 |
Modélisation multi-échelle du comportement non linéaire et hétérogène en surface de l'acier AISI H11 / Multi-scale modelling of the nonlinear and heterogeneous behaviour of AISI H11 steel surfaceZouaghi, Ahmed 31 March 2015 (has links)
Les outillages de mise en forme en acier martensitique de type AISI H11 sont des pièces critiques dont le comportement en service est étroitement lié à leurs structures internes et à leur évolution. Les conditions des sollicitations lors de la mise en oeuvre du procédé est souvent à l'origine de modifications microstructurales en surface, à savoir la morphologie des lattes de martensite, les orientations cristallographiques, l'état d'écrouissage interne ou encore le profil de surface. Ces aspects peuvent éventuellement altérer les performances mécaniques de l'acier AISI H11. Afin d'appréhender et d'optimiser le comportement mécanique de celui-ci, une approche multi-échelle est mise en oeuvre dans ce travail. Celle-ci s'articule autour d'une investigation expérimentale et d'un traitement numérique. L'étude expérimentale s'attache à reproduire, à l'échelle du laboratoire, des surfaces équivalentes à celles issues lors des procédés de mise en oeuvre des outillages. Des techniques de caractérisation spécifiques, à savoir le MEB, l'EBSD, la nanoindentation ou encore l'altimétrie permettent de mettre en évidence un gradient de la stéréologie du matériau en surface et sous-surface. Les hétérogénéités locales induites concernent la morphologie des lattes de martensite, les orientations cristallographiques, l'état d'écrouissage interne mais également le profil de surface. Des essais mécaniques in-situ associés à la technique de corrélation d'images numériques sont réalisés pour des chargements monotones quasi-statiques et cycliques de type traction-traction. Une investigation des champs mécaniques locaux en surface est ainsi effectuée, elle permet d'analyser les schémas de localisations des déformations non linéaires liés aux artéfacts stéréologiques. Le traitement numérique s'intéresse à une modélisation multi-échelle, et plus particulièrement à des calculs par la méthode des éléments finis sur des microstructures virtuelles générées par tesselations de Voronoï. Celles-ci sont effectuées de manière à reproduire les structures martensitiques et considèrent des relations d'orientations spécifiques (de type Kurdjumov-Sachs) à l'issue du traitement thermique entre les lattes de martensite et le grain austénitique parent. Les équations constitutives du modèle de plasticité cristalline (élasto-viscoplastique) de Méric-Cailletaud sont implantées dans le code de calcul par éléments finis Abaqus dans le cadre de l'hypothèse des petites perturbations (HPP) et de la théorie des transformations finies. La formulation du modèle dans le contexte de la théorie des transformations finies est effectuée dans le cadre d'une description spatiale où la notion de dérivée objective est considérée. Celle-ci consiste en celle d'Oldroyd ou de Truesdell de manière à ce qu'une telle formulation soit équivalente à une description lagrangienne. Le traitement numérique a permis de reproduire de manière qualitative les schémas de localisation en surface mise en évidence lors de l'investigation expérimentale. L'influence des divers paramètres stéréologiques, évoqués ci-dessus, sur les champs mécaniques locaux a été analysée. De par cette approche, il a été possible de mettre en évidence certains mécanismes élémentaires, notamment les effets d'interaction et de surface. Enfin, il a été constaté que la prise en compte des rotations des réseaux cristallins par la théorie des transformations finies permet de relâcher certaines zones de localisation des champs mécaniques autour d'artéfacts stéréologiques. / AISI H11 martensitic tool steels are critical mechanical components that behaviour during service is drastically linked to their internal structures and their possible evolution. Their manufacture processes are often at the origin of microstructural changes at the surface, namely the morphology of martensitic laths, the crystallographic orientations, the internal hardening state and the surface profile These aspects can potentially alter the mechanical performance of AISI H11 martensitic steel. In order to get better insight into and optimize its mechanical behaviour, a multi-scale approach involving an experimental investigation and a numerical treatment is taken in this work.The experimental investigation focuses to reproduce, at the laboratory scale, equivalent surfaces to those resulting from tool steels manufacture processes. Specific characterization techniques, namely SEM, EBSD, nanoindentation and altimetry enable to highlight a stereology gradient of the material in surface and sub-surface. The induced local heterogeneities consist in morphology of martensitic laths and crystallographic orientations, internal hardening state and surface profile. In-situ mechanical tests with digital image correlation technique (DIC) are carried out for monotonous quasi-static and tension-tension cyclic loads. An investigation of the local mechanical fields at the surface is thus performed and allows to analyze the localizations schemes of nonlinear strains which are related to stereological artifacts.The numerical treatment is focused on a multi-scale modelling, and more particularly on finite element calculations on virtual microstructures which are generated by Voronoi tesselations. The latters are carried out such that to reproduce martensitic structures and consider a specific orientation relationship between martensitic laths and parent austenitic grains (i.e. Kurdjumov-Sachs) after the heat treatment. The constitutive equations of the (elasto-viscoplastic) crystal plasticity of Méric-Cailletaud are implemented in the finite element code Abaqus in the context of the small strain assumption and the finite strain theory. The formulation of the model in the context of finite strain theory is is given a spatial description where the notion of objective derivative, namely the so called one of Oldroyd or Truesdell, is used in such a way that such formulation is equivalent to a Lagrangian description.The numerical treatment has allowed to qualitatively reproduce the localization patterns at the surface which have been highlighted in the experimental investigation. The influence of the different stereological parameters mentioned above on the local mechanical fields was analyzed. By this approach, it was possible to highlight some elementary mechanisms including interaction and surface effects. Finally, it was found that the inclusion of lattice rotations via the theory of finite strain allows to release certain areas of mechanical fields localization that are related to stereological artifacts.
|
47 |
Développement de nouveaux composites cimentaires à bas module d'élasticité : propriétés mécaniques et durabilité vis-à-vis des sollicitations environnementales / Development of new low-modulus cementitious composites : mechanical properties and durability towards environmental solicitationsBlanc, Gaël 14 March 2017 (has links)
Cette thèse, menée dans le cadre d'une Convention Industrielle de Formation par la Recherche (CIFRE) avec l'entreprise MENARD, est consacrée à l'étude de la durabilité d'un procédé particulier de renforcement de sol appelé Colonnes à Module Contrôlé (CMC). Cette application consiste en la mise en place d'un réseau d'inclusions verticales semi-rigides dans un sol afin d'améliorer les caractéristiques globales du terrain avant construction. Ces travaux font suite aux travaux de thèse de François Duplan (2011-2014) sur le développement de nouveaux composites cimentaires destinés à cette application. Dans ce but, il avait optimisé des compositions de mortiers incorporant des granulats spéciaux tels que des billes d'argile expansée ou des granulats en caoutchouc issus du broyage de pneus usagés. Les effets de l'introduction de ces granulats dans les composites ont été analysés aussi bien à l'état frais qu'à l'état durci et complètent les précédentes analyses de F. Duplan, notamment en termes d'indicateur de durabilité (perméabilité aux gaz, diffusion aux ions chlorures) et de comportement mécanique à long terme (retrait et fluage). A l'issue d'une analyse environnementale de l'application, trois mécanismes potentiels de dégradation ont été sélectionnés pour des investigations sur la durabilité des CMC : l'attaque acide, l'attaque sulfatique externe et la dégradation par cristallisation de sels. La réalisation d'essais accélérés en laboratoire a permis de mettre en évidence la pertinence du ciment CEM III/C, utilisé actuellement par MENARD, dans la majorité des cas. La faible teneur en C3A de ce liant permet en effet de limiter la production d'éléments expansifs dans le cas d'une attaque sulfatique externe et sa proportion limitée en hydrates du clinker (en particulier en portlandite) ainsi que le faible rapport C/S des C-S-H assurent une meilleure tenue aux attaques acides. La dégradation par remontée capillaire et cristallisation de sels dépendant avant tout des caractéristiques du réseau poreux et des conditions d'évaporation et beaucoup moins du type de ciment, l'utilisation du ciment CEM III/C présente moins d'intérêt. L'incorporation de granulats en caoutchouc ou de billes d'argile expansée dans les composites ne modifie qu'à la marge leur tenue aux mécanismes de dégradations testés. La majorité des phénomènes de dégradation de l'application étant liée à la pénétration d'agents agressifs au cœur des composites cimentaires, la prédiction des propriétés diffusives du matériau est essentielle dans l'estimation des risques encourus par l'application. Un nouveau modèle prédictif est proposé et comporte deux échelles d'homogénéisation : la première au niveau de la pâte de ciment et la deuxième au niveau du mortier. Les résultats obtenus par ce modèle sont fidèles aux résultats expérimentaux avec des erreurs relatives inférieures à 15%. L'estimation du coefficient de diffusion est globalement plus précise pour les composites incorporant des billes d'argile expansée que pour ceux incorporant des granulats en caoutchouc, une conséquence de la forme sphérique de ces billes mieux en accord avec les hypothèses du modèle mis en œuvre. / This CIFRE PhD-thesis carried out within the framework of Convention Industrielle de Formation par la REcherche (CIFRE) with the company MENARD, focuses on the durability of a specific soil-reinforcement system called Controlled Modulus Columns (CMC) which consists in a network of semi-rigid vertical inclusions cast into the ground in order to enhance its global characteristics before building. This study comes after the PhD work conducted by François Duplan (2011-2014) on the design of new cementitious composites intended for the CMC application and incorporating innovative aggregates like expanded clay grains or rubber aggregates obtained by grinding end-of-life tyres. The effects of addition of such aggregates into the composites have been studied both at fresh and hardened states and complete Duplan previous findings in particular with regards durability indicators (gas permeability, chloride diffusion) and mechanical long-term behaviour (creep and shrinkage). Three potential degradation mechanisms have been selected for the CMC system after an environmental analysis: acid attack, external sulphate attack and salt crystallisation. Laboratory accelerated tests highlighted that CEM III/C cement, actually used by MENARD, is suitable in most of the cases. The low C3A content of this binder reduces the production of expansive products in the case of external sulphate attack and its limited clinker hydrates proportions (in particular in portlandite), along with the low C/S ratio of the C-S-H enhance the resistance to acid attack. Salt crystallisation through capillary rise primarily depends on the porous network characteristics and less on the cement ones, meaning that CEM III/C cement is less relevant in that specific case. Based on the tested degradation mechanisms, incorporating rubber aggregates or expended clay ones into the cementitious composites does not significantly affect their durability. Most of the application degradation phenomenon being linked to the ingress of aggressive agents into the composites; the prediction of their diffusive properties is crucial to assess the risks involved for the application. A new predictive model is proposed with a dual homogenisation process: the first one at the cement paste level and the second one on the mortar level. Predicted results are in agreement with ones from experimental tests with a relative error less than 15%. Diffusion coefficient estimates are globally better for composites that contain expended clay aggregates than those incorporating rubber aggregates due to spherical shape of the first in accordance with the model hypotheses.
|
48 |
Nanoscale phenomena in lubrication : From atomistic simulations to their integration into continuous models / Phénomènes nanoscopiques en lubrification : Des simulations atomistiques à leur intégration dans les modèles continusSavio, Daniele 31 October 2013 (has links)
Les tendances actuelles en lubrification visent à réduire la quantité d’huile dans les mécanismes. En conséquence l’épaisseur de film dans les zones de contact est réduite à l’échelle du nanomètre, et peu de molécules de lubrifiant assurent la séparation des surfaces. Des simulations basées sur la méthode de la Dynamique Moléculaire sont utilisées pour étudier le comportement de ces films sévèrement confinés à l’échelle des atomes. Une attention particulière est portée sur le phénomène de glissement aux parois : des lois analytiques sont formulées pour quantifier et prédire cet effet en fonction du couple surface-fluide ou des conditions opératoires locales dans un contact. Ensuite, un couplage entre les modèles moléculaires et macroscopiques est effectué. Les équations classiques de la lubrification sont modifiées pour inclure les effets de glissement quantifiés précédemment. Il est montré que l’épaisseur de film au centre d’un contact et le frottement sont modifiés de façon significative. Enfin, la problématique de réduction de la quantité de lubrifiant est poussée à ses limites jusqu’à atteindre la rupture du film et le contact direct entre solides. Une analyse à l’échelle moléculaire de ce processus permet de faire le lien entre la disposition des dernières molécules séparant les surfaces et le comportement tribologique local. / The modern trends in lubrication aim at reducing the oil quantity in tribological applications. As a consequence, the film thickness in the contact zone decreases significantly and can reach the order of magnitude of a few nanometres. Hence, the surface separation is ensured by very few lubricant molecules. Atomistic simulations based on the Molecular Dynamics method are used to analyze the local behavior of these severely confined films. A particular attention is paid to the occurrence of wall slip: predictive models and analytical laws are formulated to quantify and predict this phenomenon as a function of the surface-lubricant pair or the local operating conditions in a contact interface. Then, the coupling between Molecular Dynamics simulations and macroscopic models is explored. The classical lubrication theory is modified to include slip effects characterized previously. This approach is employed to study an entire contact featuring a nano-confined lubricant in its center, showing a severe modification of the film thickness and friction. Finally, the lubricant quantity reduction is pushed to the limits up to the occurrence of local film breakdown and direct surface contact. In this scenario, atomistic simulations allow to understand the relationship between the configuration of the last fluid molecules in the contact and the local tribological behavior.
|
49 |
Development of a multi-scale meteorological system to improve urban climate modeling / Developpement d'un système météorologique multi-échelle pour améliorer la modélisation du climat urbainMauree, Dasaraden 19 March 2014 (has links)
Ce travail a consisté à développer un modèle de canopée (CIM), qui pourrait servir d’interface entre des modèles méso-échelles de calcul du climat urbain et des modèles micro-échelles de besoin énergétique du bâtiment. Le développement est présenté en conditions atmosphériques variées, avec et sans obstacles, en s’appuyant sur les théories précédemment proposées. Il a été, par exemple, montré que, pour être en cohérence avec la théorie de similitude de Monin-Obukhov, un terme correctif devait être rajouté au terme de flottabilité de la T.K.E. CIM a aussi été couplé au modèle méso-échelle WRF. Une méthodologie a été proposée pour profiter de leurs avantages respectifs (un plus résolu, l’autre intégrant des termes de transports horizontaux) et pour assurer la cohérence de leurs résultats. Ces derniers ont montré que ce système, en plus d’être plus précis que le modèle WRF à la même résolution, permettait, par l’intermédiaire de CIM, de fournir des profils plus résolus près de la surface. / This study consisted in the development of a canopy model (CIM), which could be use as an interface between meso-scale models used to simulate urban climate and micro-scale models used to evaluate building energy use. The development is based on previously proposed theories and is presented in different atmospheric conditions, with and without obstable. It has been shown, for example, that to be in coherence with the Monin-Obukhov Similarity Theory, that a correction term has to be added to the buoyancy term of the T.K.E. CIM has also been coupled with the meteorological meso-scale model WRF. A methodology was proposed to take advantage of both models (one being more resolved, the other one integrating horizontal transport terms) and to ensure a coherence of the results. Besides being more precise than the WRF model at the same resolution, this system allows, through CIM, to provide high resolved vertical profiles near the surface.
|
50 |
On advanced techniques for generation and discretization of the microstructure of complex heterogeneous materialsSonon, Bernard 18 December 2014 (has links)
The macroscopic behavior of complex heterogeneous materials is strongly governed by the interactions between their elementary constituents within their microstructure. Beside experimental efforts characterizing the behaviors of such materials, there is growing interest, in view of the increasing computational power available, in building models representing their microstructural systems integrating the elementary behaviors of their constituents and their geometrical organization. While a large number of contributions on this aspect focus on the investigation of advanced physics in material parameter studies using rather simple geometries to represent the spatial organization of heterogeneities, few are dedicated to the exploration of the role of microstructural geometries by means of morphological parameter studies.<p>The critical ingredients of this second type of investigation are (I) the generation of sets of representative volume elements ( RVE ) describing the geometry of microstructures with a satisfying control on the morphology relevant to the material of interest and (II) the discretization of governing equations of a model representing the investigated physics on those RVEs domains. One possible reason for the under-representation of morphologically detailed RVEs in the related literature may be related to several issues associated with the geometrical complexity of the microstructures of considered materials in both of these steps. Based on this hypothesis, this work is aimed at bringing contributions to advanced techniques for the generation and discretization of microstructures of complex heterogeneous materials, focusing on geometrical issues. In particular, a special emphasis is put on the consistent geometrical representation of RVEs across generation and discretization methodologies and the accommodation of a quantitative control on specific morphological features characterizing the microstructures of the covered materials.<p>While several promising recent techniques are dedicated to the discretization of arbitrary complex geometries in numerical models, the literature on RVEs generation methodologies does not provide fully satisfying solutions for most of the cases. The general strategy in this work consisted in selecting a promising state-of-the-art discretization method and in designing improved RVE generation techniques with the concern of guaranteeing their seamless collaboration. The chosen discretization technique is a specific variation of the generalized / extended finite element method that accommodates the representation of arbitrary input geometries represented by level set functions. The RVE generation techniques were designed accordingly, using level set functions to define and manipulate the RVEs geometries. <p>The RVE methodologies developed are mostly morphologically motivated, incorporating governing parameters allowing the reproduction and the quantitative control of specific morphological features of the considered materials. These developments make an intensive use of distance fields and level set functions to handle the geometrical complexity of microstructures. Valuable improvements were brought to the RVE generation methodologies for several materials, namely granular and particle-based materials, coated and cemented geomaterials, polycrystalline materials, cellular materials and textile-based materials. RVEs produced using those developments have allowed extensive testing of the investigated discretization method, using complex microstructures in proof-of-concept studies involving the main ingredients of RVE-based morphological parameter studies of complex heterogeneous materials. In particular, the illustrated approach offers the possibility to address three crucial aspects of those kinds of studies: (I) to easily conduct simulations on a large number of RVEs covering a significant range of morphological variations for a material, (II) to use advanced constituent material behaviors and (III) to discretize large 3D RVEs. Based on those illustrations and the experience gained from their realization, the main strengths and limitations of the considered discretization methods were clearly identified. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0669 seconds