Spelling suggestions: "subject:"multiphase"" "subject:"multiphases""
481 |
Modular Kinematic Analysis Of Planar LinkagesChowdary, Sekhar V S C 07 1900 (has links)
This thesis has developed an efficient methodology for automatic kinematic analysis of planar linkages using the concept of modular kinematics. Unlike conventional general purpose kinematic analysis packages where each joint in the mechanism is represented using a set of non-linear constraint equations which need to be solved by some iterative numerical procedure, modular kinematics is based on the original observation by Assur that kinematic state of a mechanism involving large number of links can be constructed out of the kinematic states of patterns of sub chains called modules taken in a given sequence called module sequence which in turn emulates the step by step construction procedure of traditional graphical methods. The position, velocity and acceleration analysis of modules are available in closed form. Kinematic analysis of modules later in the sequence is enabled by those of the ones earlier in the sequence, hence, the kinematic analysis of a mechanism is accomplished without any iterative endeavor by doing the kinematics of the modules as given in the module sequence. [102] classified all modules into three fundamental types namely input, dyad and transformation and also introduced the concept of constraint module for analyzing graphically non-constructible mechanisms within the paradigm of modular kinematics where a small step of numerical search was needed in an over all closed form kinematic formulation. Module sequence for a mechanism using the modules is not unique. Choice of a later module in the sequence depends upon the selection of modules earlier in the sequence. This thesis has presented a systematic approach of identifying all such methods for all the inversions of the mechanism and represented in the form of a module hierarchy or a module tree where each path from root to the leaf node represents a valid module sequence for the kinematic chain in hand. The work also extended the set of modules by adding eight new modules to what has already been used in literature to make it complete in the sense that all planar mechanisms involving revolute, prismatic and pin-in-slot (including circular slots) can be handled. The computational effort involved for analyzing these mechanisms thus depend on the number of constraint modules occurring in succession in the module sequence. However, maximum possible number of constraint modules in any mechanism with up to twelve links is only two. The derivative analysis also uses the same module sequence, but they are always devoid of any iterative steps. During the process of generation of a module sequence, at every stage multitude of modules could be identified for their potential placement in the sequence. But for every module sequence the difference between the number of input modules and that of constraint modules is constant and is equal to the kinematic degrees-of-freedom (d.o.f) of the mechanism. The algorithm presented in this thesis minimizes the number of generalized inputs (and hence extraneous constraints) and thus attempting to identify the simplest of the module sequences. In that sense the module sequences represented in the module tree are all optimal module sequences. The present work introduced the concept of multi phase modular kinematics which enables a large variety of mechanisms, conventionally identified as complex mechanisms, to be solved in closed form. This is achieved through the use of novel virtual link and virtual joints. Virtual link is slightly different from a normal rigid link in the sense that the joint locations on this are functions of some independent parameters. Since, the locations of joints are not fixed even in the local coordinate frame of the virtual link, the relative velocities between joints are not zero, they need to be appropriately accounted in kinematic analysis.
The theory presented in the thesis is implemented in a computer program written in C++ on Windows platform and Graphics library (OpenGL) is used to display linkage configurations and simulations. The program takes the data of joints, input pairs, ground link in certain format through a file. Geometric models developed in any of the existing modeling softwares like ProE, Ideas, AutoCad etc. can be imported in VRML format to the links and in case of no geometric models a simple convex 2D geometry is created for each link for the purpose of visualization. Geometric import of links helps not only in understanding the simulations better but also in useful for dynamic analysis, dynamic motion analysis and interference analysis. A complete kinematic analysis (position, velocity and acceleration) is given for a four bar mechanism and illustrated the positional ( configuration) analysis using modular kinematics for several other examples like old-ham, quick-return mechanisms etc. in the current work. Multi-phase modular approach is illustrated using a five bar with floating input pairs, a back actor and a drafter mechanism and the Back actor configuration is shown with the imported link geometries.
It is observed in practice that there are many apparently spatial Mechanisms, which are constructed out of symmetric dispositions of planar mechanisms in space. A pseudo spatial mechanism concept is proposed to solve this class of spatial mechanisms, which can actually be analyzed with the effort of solving only one such component. This concept is illustrated with Shaker and Umbrella mechanisms. Possible extensions of the concept for modeling and analysis of more general class of pseudo-spatial mechanisms are also indicated.
|
482 |
Impedance Sensors for Fast Multiphase Flow Measurement and ImagingDa Silva, Marco Jose 09 December 2008 (has links) (PDF)
Multiphase flow denotes the simultaneous flow of two or more physically distinct and immiscible substances and it can be widely found in several engineering applications, for instance, power generation, chemical engineering and crude oil extraction and processing. In many of those applications, multiphase flows determine safety and efficiency aspects of processes and plants where they occur. Therefore, the measurement and imaging of multiphase flows has received much attention in recent years, largely driven by a need of many industry branches to accurately quantify, predict and control the flow of multiphase mixtures. Moreover, multiphase flow measurements also form the basis in which models and simulations can be developed and validated. In this work, the use of electrical impedance techniques for multiphase flow measurement has been investigated. Three different impedance sensor systems to quantify and monitor multiphase flows have been developed, implemented and metrologically evaluated. The first one is a complex permittivity needle probe which can detect the phases of a multiphase flow at its probe tip by simultaneous measurement of the electrical conductivity and permittivity at up to 20 kHz repetition rate. Two-dimensional images of the phase distribution in pipe cross section can be obtained by the newly developed capacitance wire-mesh sensor. The sensor is able to discriminate fluids with different relative permittivity (dielectric constant) values in a multiphase flow and achieves frame frequencies of up to 10 000 frames per second. The third sensor introduced in this thesis is a planar array sensor which can be employed to visualize fluid distributions along the surface of objects and near-wall flows. The planar sensor can be mounted onto the wall of pipes or vessels and thus has a minimal influence on the flow. It can be operated by a conductivity-based as well as permittivity-based electronics at imaging speeds of up to 10 000 frames/s. All three sensor modalities have been employed in different flow applications which are discussed in this thesis. The main contribution of this research work to the field of multiphase flow measurement technology is therefore the development, characterization and application of new sensors based on electrical impedance measurement. All sensors present high-speed capability and two of them allow for imaging phase fraction distributions. The sensors are furthermore very robust and can thus easily be employed in a number of multiphase flow applications in research and industry.
|
483 |
Development of a free surface method utilizing an incompressible multi-phase algorithm to study the flow about surface ships and underwater vehiclesNichols, Dudley Stephen. January 2002 (has links)
Thesis (Ph. D.)--Mississippi State University. Department of Engineering. / Title from title screen. Includes bibliographical references.
|
484 |
Development of a coupled wellbore-reservoir compositional simulator for damage prediction and remediationShirdel, Mahdy 01 October 2013 (has links)
During the production and transportation of oil and gas, flow assurance issues may occur due to the solid deposits that are formed and carried by the flowing fluid. Solid deposition may cause serious damage and possible failure to production equipment in the flow lines. The major flow assurance problems that are faced in the fields are concerned with asphaltene, wax and scale deposition, as well as hydrate formations. Hydrates, wax and asphaltene deposition are mostly addressed in deep-water environments, where fluid flows through a long path with a wide range of pressure and temperature variations (Hydrates are generated at high pressure and low temperature conditions). In fact, a large change in the thermodynamic condition of the fluid yields phase instability and triggers solid deposit formations. In contrast, scales are formed in aqueous phase when some incompatible ions are mixed. Among the different flow assurance issues in hydrocarbon reservoirs, asphaltenes are the most complicated one. In fact, the difference in the nature of these molecules with respect to other hydrocarbon components makes this distinction. Asphaltene molecules are the heaviest and the most polar compounds in the crude oils, being insoluble in light n-alkenes and readily soluble in aromatic solvents. Asphaltene is attached to similarly structured molecules, resins, to become stable in the crude oils. Changing the crude oil composition and increasing the light component fractions destabilize asphaltene molecules. For instance, in some field situations, CO₂ flooding for the purpose of enhanced oil recovery destabilizes asphaltene. Other potential parameters that promote asphaltene precipitation in the crude oil streams are significant pressure and temperature variation. In fact, in such situations the entrainment of solid particulates in the flowing fluid and deposition on different zones of the flow line yields serious operational challenges and an overall decrease in production efficiency. The loss of productivity leads to a large number of costly remediation work during a well life cycle. In some cases up to $5 Million per year is the estimated cost of removing the blockage plus the production losses during downtimes. Furthermore, some of the oil and gas fields may be left abandoned prematurely, because of the significance of the damage which may cause loss about $100 Million. In this dissertation, we developed a robust wellbore model which is coupled to our in-house developed compositional reservoir model (UTCOMP). The coupled wellbore/reservoir simulator can address flow restrictions in the wellbore as well as the near-wellbore area. This simulator can be a tool not only to diagnose the potential flow assurance problems in the developments of new fields, but also as a tool to study and design an optimum solution for the reservoir development with different types of flow assurance problems. In addition, the predictive capability of this simulator can prescribe a production schedule for the wells that can never survive from flow assurance problems. In our wellbore simulator, different numerical methods such as, semi-implicit, nearly implicit, and fully implicit schemes along with blackoil and Equation-of-State compositional models are considered. The Equation-of-State is used as state relations for updating the properties and the equilibrium calculation among all the phases (oil, gas, wax, asphaltene). To handle the aqueous phase reaction for possible scales formation in the wellbore a geochemical software package (PHREEQC) is coupled to our simulator as well. The governing equations for the wellbore/reservoir model comprise mass conservation of each phase and each component, momentum conservation of liquid, and gas phase, energy conservation of mixture of fluids and fugacity equations between three phases and wax or asphaltene. The governing equations are solved using finite difference discretization methods. Our simulation results show that scale deposition is mostly initiated from the bottom of the wellbore and near-wellbore where it can extend to the upper part of the well, asphaltene deposition can start in the middle of the well and the wax deposition begins in the colder part of the well near the wellhead. In addition, our simulation studies show that asphaltene deposition is significantly affected by CO₂ and the location of deposition is changed to the lower part of the well in the presence of CO₂. Finally, we applied the developed model for the mechanical remediation and prevention procedures and our simulation results reveal that there is a possibility to reduce the asphaltene deposition in the wellbore by adjusting the well operation condition. / text
|
485 |
A coupled wellbore/reservoir simulator to model multiphase flow and temperature distributionPourafshary, Peyman, 1979- 29 August 2008 (has links)
Hydrocarbon reserves are generally produced through wells drilled into reservoir pay zones. During production, gas liberation from the oil phase occurs due to pressure decline in the wellbore. Thus, we expect multiphase flow in some sections of the wellbore. As a multi-phase/multi-component gas-oil mixture flows from the reservoir to the surface, pressure, temperature, composition, and liquid holdup distributions are interrelated. Modeling these multiphase flow parameters is important to design production strategies such as artificial lift procedures. A wellbore fluid flow model can also be used for pressure transient test analysis and interpretation. Considering heat exchange in the wellbore is important to compute fluid flow parameters accurately. Modeling multiphase fluid flow in the wellbore becomes more complicated due to heat transfer between the wellbore fluids and the surrounding formations. Due to mass, momentum, and energy exchange between the wellbore and the reservoir, the wellbore model should be coupled with a numerical reservoir model to simulate fluid flow accurately. This model should be non-isothermal to consider the effect of temperature. Our research shows that, in some cases, ignoring compositional effects may lead to errors in pressure profile prediction for the wellbore. Nearly all multiphase wellbore simulations are currently performed using the "black oil" approach. The primary objective of this study was to develop a non-isothermal wellbore simulator to model transient fluid flow and temperature and couple the model to a reservoir simulator called General Purpose Adaptive Simulator (GPAS). The coupled wellbore/reservoir simulator can be applied to steady state problems, such as production from, or injection to a reservoir as well as during transient phenomena such as well tests to accurately model wellbore effects. Fluid flow in the wellbore may be modeled either using the blackoil approach or the compositional approach, as required by the complexity of the fluids. The simulation results of the new model were compared with field data for pressure gradients and temperature distribution obtained from wireline conveyed pressure recorder and acoustic fluid level measurements for a gas/oil producer well during a buildup test. The model results are in good agreement with the field data. Our simulator gave us further insights into the wellbore dynamics that occur during transient problems such as phase segregation and counter-current multiphase flow. We show that neglecting these multiphase flow dynamics would lead to unreliable results in well testing analysis.
|
486 |
Grain-scale mechanisms of particle retention in saturated and unsaturated granular materialsRodriguez-Pin, Elena 10 February 2011 (has links)
The phenomenon of particle retention in granular materials has a wide range of implications. For agricultural operations, these particles can be contaminants transported through the ground that can eventually reach to aquifers, consequently contaminating the water. In oil reservoirs, these particles can be clays that get detached from the rock and migrate with the flow after a change of pressure, plugging the reservoir with the consequent reduction in permeability. These particles can also be traceable nanoparticles, introduced in the reservoir with the purpose of identifying bypassed oil. For all these reasons it is important to understand the mechanisms that contribute to the transport and retention of these particles.
In this dissertation the retention of micro and nano size particles was investigated. In saturated model sediments (sphere packs), we analyzed the retention of particles by the mechanism of straining (size exclusion). The analysis focused on experiments reported in the literature in which particles smaller than the smallest pore throats were retained in the sediment. The analysis yields a mechanistic explanation of these observations, by indentifying the retention sites as gaps between pairs of sediment grains. A predictive model was developed that yields a relationship between the straining rate constant and particle size in agreement with the experimental observations.
In unsaturated granular materials, the relative contributions of grain surfaces, interfacial areas and contact lines between phases to the retention of colloidal size particles were investigated. An important part of this analysis was the identification and calculation of the length of the contact lines between phases. This estimation of contact line lengths in porous media is the first of its kind. The algorithm developed to compute contact line length yielded values consistent with observations from beads pack and real rocks, which were obtained independently from analysis of high resolution images. Additionally, the predictions of interfacial areas in granular materials were consistent with an established thermodynamic theory of multiphase flow in porous media. Since there is a close relationship between interfacial areas and contact lines this supports the accuracy of the contact line length estimations. Predictions of contact line length and interfacial area in model sediments, combined with experimental values of retention of colloidal size particles in columns of glass beads suggested that it is plausible for interfacial area and contact line to contribute in the same proportion to the retention of particles.
The mechanism of retention of surface treated nanoparticles in sedimentary rocks was also investigated, where it was found that retention is reversible and dominated by attractive van der Waals forces between the particles and the rock’s grain surfaces.
The intricate combination of factors that affect retention makes the clear identification of the mechanism responsible for trapping a complex task. The work presented in this dissertation provides significant insight into the retention mechanisms in relevant scenarios. / text
|
487 |
The flow of a compressible gas through an aggregate of mobile reacting particles /Gough, P. S. (Paul Stuart) January 1974 (has links)
No description available.
|
488 |
Single-Phase And Multi-Phase Convection During Solidification Of Non-eutectic Binary SolutionsChakraborty, Prodyut Ranjan 02 1900 (has links) (PDF)
During solidification of non-eutectic alloys, non-isothermal phase change causes dendritic growth of solid front with liquid phase entrapped within the dendritic network producing the mushy region. Solidification causes rejection of solute at the solid-liquid interface and within the mushy zone, causing a sharp concentration gradient to build up across the mushy region. At the same time, a temperature gradient is present as a result of externally imposed boundary conditions as well as due to evolution of latent heat, giving rise to the so-called “double-diffusive” or thermo-solutal convection. Depending on the relative density of the solute being rejected in the liquid phase during solidification process, thermal and solutal buoyancy can either aid or oppose each other. Rejection of a heavier solute leads to aiding thermo-solutal convection situation whereas the rejection of lighter solute causes the thermal and solutal buoyancy to oppose each other. If the thermal and solutal buoyancies oppose each other, flow instability arises adjacent to the mush-bulk liquid interface regions. Thus, there may be a wide variety of convection situations present in the solidifying domain for different combinations of solution concentrations and externally imposed boundary conditions.
The situation becomes even more complex if the solid phase movement along with the bulk flow is involved in the process, leading to multiphase convection. Detachment of solid phase from the solid/liquid interface can be caused by remelting (solutal and/or thermal) and shearing action of a convecting liquid adjacent to the interface. Depending on the drag of the bulk flow and the density of the solid phase relative to that of the bulk liquid, these detached particles can either float or sediment.
The redistribution of the rejected solute by means of diffusion (at a local scale) and thermo-solutal convection (at system level length scales) causes heterogeneous orientation of mixture constituents over the solidifying domain popularly known as macro-segregation. From the point of view of manufacturing, severe form of macro-segregation or heterogeneous species distribution is an undesirable phenomenon and hence, a thorough understanding of the species redistribution by means of diffusion and convection during solidification process is very important. Most of the earlier studies on double diffusive convection during solidification involved fixed dendrites. However, the advection of solid particles during the solidification process can generate major instability in the flow pattern while modifying the solid front growth, and hence the macro-segregation pattern considerably.
With this viewpoint in mind, the overall objective of the present work is to address these wide-varieties of single phase and multi phase flow situations and their effect on solid front growth and macro-segregation during directional solidification of non-eutectic binary alloys, numerically as well as experimentally. Different configurations of directional solidification processes involving double diffusive convection have been studied for two different kinds of non-eutectic solutions. While solidification of hypoeutectic solutions leads to aiding type double diffusive convection, the solidification of hyper-eutectic solutions is characterized by opposing type double diffusive convection. Solidification of hypo-eutectic solution generally involves single phase flow, while most of the hyper-eutectic solidification involves movement of solid phase (i.e. multiphase flow). As far as the modeling part is concerned, transport phenomena during solidification with multiphase convection are not common in existing literature. This work is a first attempt to develop a solidification model with multiphase flow based entirely on macroscopic parameters. As a first step, a generalized macroscopic framework has been developed for mathematical modeling of multiphase flow during solidification of binary alloy systems. The complete set of equivalent single-domain governing equations (mass, momentum, energy and species conservation) are coupled with the phase (solid and liquid) velocities. A generalized algorithm has been developed to determine solid detachment and solid advection phenomena, based on two critical parameters, namely: critical solid fraction and critical velocity. While the first of these two parameters (critical solid fraction) represents the strength of the dendritic bond, the second (critical velocity) stands for the intensity of flow to create drag force and solutal remelting at the dendrite roots. A new approach for evaluating liquid/solid fraction by using fixed grid enthalpy updating scheme, that accounts for multiphase flow and, at the same time, handles equilibrium and non equilibrium solidification mechanisms, has been proposed. The newly developed model has been validated with existing literatures as well as with experimental observations performed in the present work.
The experimental results were obtained by using PIV as well as laser scattering techniques. Side cooled as well as top cooled configurations are studied. Single phase convection is observed for the case of hypo-eutectic solution, whereas hyper-eutectic solutions involve convection with movement of solid phase. For the case of bottom cooled hyper-eutectic solution, finger-like convection leading to freckle formation is observed. For all the hyper-eutectic cases, solid phase movement is found to alter the convection pattern and final macrosegregation significantly. The numerical results are compared with experimental observations both qualitatively as well as quantitatively.
|
489 |
The modelling of particle build up in shell-and-tube heat exchangers due to process cooling water / Christiaan Jacob GhyootGhyoot, Christiaan Jacob January 2013 (has links)
Sasol Limited experiences extremely high particulate fouling rates inside shell-and-tube heat
exchangers that utilize process cooling water. The water and foulants are obtained from
various natural and process sources and have irregular fluid properties. The fouling
eventually obstructs flow on the shell side of the heat exchanger to such an extent that the
tube bundles have to be replaced every nine months. Sasol requested that certain aspects
of this issue be addressed.
To better understand the problem, the effects of various tube and baffle configurations on
the sedimentation rate in a shell-and-tube heat exchanger were numerically investigated.
Single-segmental, double-segmental and disc-and-doughnut baffle configurations, in
combination with square and rotated triangular tube configurations, were simulated by using
the CFD software package, STAR-CCM+. In total, six configurations were investigated.
The solution methodology was divided into two parts.
Firstly, steady-state solutions of the six configurations were used to identify the best
performing model in terms of large areas with high velocity flow. The results identified both
single-segmental baffle configurations to have the best performance.
Secondly, transient multiphase simulations were conducted to investigate the sedimentation
characteristics of the two single-segmental baffle configurations. It was established that the
current state of available technology cannot adequately solve the detailed simulations in a
reasonable amount of time and results could only be obtained for a time period of a few
seconds.
By simulating the flow fields for various geometries in steady-state conditions, many of the
observations and findings of literature were verified. The single-segmental baffle
configurations have higher pressure drops than double-segmental and disc-and-doughnut
configurations. In similar fashion, the rotated triangular tube configuration has a higher
pressure drop than the square arrangement. The single-segmental configurations have on
average higher flow velocities and reduced cross-flow mass flow fractions. It was concluded
from this study that the single-segmental baffle with rotated triangular tube configuration had
the best steady-state performance.
Some results were extracted from the transient multiphase simulations. The transient
multiphase flow simulation of the single-segmental baffle configurations showed larger
concentrations of stagnant sediment for the rotated triangular tube configuration versus
larger concentrations of suspended/flowing sediment in the square tube configuration. This
result was offset by the observation that the downstream movement of sediment was quicker
for the rotated triangular tube configuration.
No definitive results could be obtained, but from the available results, it can be concluded
that the configuration currently implemented at Sasol is best suited to handle sedimentation.
This needs to be verified in future studies by using advanced computational resources and
experimental results. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
|
490 |
The modelling of particle build up in shell-and-tube heat exchangers due to process cooling water / Christiaan Jacob GhyootGhyoot, Christiaan Jacob January 2013 (has links)
Sasol Limited experiences extremely high particulate fouling rates inside shell-and-tube heat
exchangers that utilize process cooling water. The water and foulants are obtained from
various natural and process sources and have irregular fluid properties. The fouling
eventually obstructs flow on the shell side of the heat exchanger to such an extent that the
tube bundles have to be replaced every nine months. Sasol requested that certain aspects
of this issue be addressed.
To better understand the problem, the effects of various tube and baffle configurations on
the sedimentation rate in a shell-and-tube heat exchanger were numerically investigated.
Single-segmental, double-segmental and disc-and-doughnut baffle configurations, in
combination with square and rotated triangular tube configurations, were simulated by using
the CFD software package, STAR-CCM+. In total, six configurations were investigated.
The solution methodology was divided into two parts.
Firstly, steady-state solutions of the six configurations were used to identify the best
performing model in terms of large areas with high velocity flow. The results identified both
single-segmental baffle configurations to have the best performance.
Secondly, transient multiphase simulations were conducted to investigate the sedimentation
characteristics of the two single-segmental baffle configurations. It was established that the
current state of available technology cannot adequately solve the detailed simulations in a
reasonable amount of time and results could only be obtained for a time period of a few
seconds.
By simulating the flow fields for various geometries in steady-state conditions, many of the
observations and findings of literature were verified. The single-segmental baffle
configurations have higher pressure drops than double-segmental and disc-and-doughnut
configurations. In similar fashion, the rotated triangular tube configuration has a higher
pressure drop than the square arrangement. The single-segmental configurations have on
average higher flow velocities and reduced cross-flow mass flow fractions. It was concluded
from this study that the single-segmental baffle with rotated triangular tube configuration had
the best steady-state performance.
Some results were extracted from the transient multiphase simulations. The transient
multiphase flow simulation of the single-segmental baffle configurations showed larger
concentrations of stagnant sediment for the rotated triangular tube configuration versus
larger concentrations of suspended/flowing sediment in the square tube configuration. This
result was offset by the observation that the downstream movement of sediment was quicker
for the rotated triangular tube configuration.
No definitive results could be obtained, but from the available results, it can be concluded
that the configuration currently implemented at Sasol is best suited to handle sedimentation.
This needs to be verified in future studies by using advanced computational resources and
experimental results. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
|
Page generated in 0.0488 seconds