Spelling suggestions: "subject:"cultiple regression model"" "subject:"bmultiple regression model""
11 |
無線點對點合理資訊交易模型達成破壞性行銷之研究謝儒鋒, Hsieh,Ju Feng Unknown Date (has links)
在可預見之未來無線點對點的世界裡,資訊交易就如同現實世界人與人間的交易模式,需考量到交易資訊的成本、價值與人際關係衡量之因素;傳統廣告行銷的效率問題也待創新的資訊交易平台來解決。本研究提出的資訊交易模型,以人性考量為基礎,在各種不同情境下,動態衡量資訊成本、價值與使用者間關係,透過助理軟體,協助加入資訊交易平台之個體,以更便利方式進行資訊交易,預期讓交易結果更貼近使用者的需求;而企業方面也能透過點與點之間快速傳遞資訊的特性,預期以更低成本、更高效率,完成商務行銷目的,達到破壞性行銷之目標。 / This paper presents a novel ambient e-service aiming at distributed marketing through sensible bartering in foreseeable wireless Peer-to-Peer (WP2P) environments. A variety of influential factors (e.g., cost, value, relationship) are proposed and formalized for empowering the bartering mechanism, unfolding a rich arena of ambient distributed trading and a disruptive paradigm of e-marketing.
|
12 |
複迴歸係數排列檢定方法探討 / Methods for testing significance of partial regression coefficients in regression model闕靖元, Chueh, Ching Yuan Unknown Date (has links)
在傳統的迴歸模型架構下,統計推論的進行需要假設誤差項之間相互獨立,且來自於常態分配。當理論模型假設條件無法達成的時候,排列檢定(permutation tests)這種無母數的統計方法通常會是可行的替代方法。
在以往的文獻中,應用於複迴歸模型(multiple regression)之係數排列檢定方法主要以樞紐統計量(pivotal quantity)作為檢定統計量,進而探討不同排列檢定方式的差異。本文除了採用t統計量這一個樞紐統計量作為檢定統計量的排列檢定方式外,亦納入以非樞紐統計量的迴歸係數估計量b22所建構而成的排列檢定方式,藉由蒙地卡羅模擬方法,比較以此兩類檢定方式之型一誤差(type I error)機率以及檢定力(power),並觀察其可行性以及適用時機。模擬結果顯示,在解釋變數間不相關且誤差分配較不偏斜的情形下,Freedman and Lane (1983)、Levin and Robbins (1983)、Kennedy (1995)之排列方法在樣本數大時適用b2統計量,且其檢定力較使用t2統計量高,但差異程度不大;若解釋變數間呈現高度相關,則不論誤差的偏斜狀態,Freedman and Lane (1983)、Kennedy (1995) 之排列方法於樣本數大時適用b2統計量,其檢定力結果也較使用t2統計量高,而且兩者的差異程度比起解釋變數間不相關時更加明顯。整體而言,使用t2統計量適用的場合較廣;相反的,使用b2的模擬結果則常需視樣本數大小以及解釋變數間相關性而定。 / In traditional linear models, error term are usually assumed to be independently, identically, normally distributed with mean zero and a constant variance. When the assumptions cannot meet, permutation tests can be an alternative method.
Several permutation tests have been proposed to test the significance of a partial regression coefficient in a multiple regression model. t=b⁄(se(b)), an asymptotically pivotal quantity, is usually preferred and suggested as the test statistic. In this study, we take not only t statistics, but also the estimates of the partial regression coefficient as our test statistics. Their performance are compared in terms of the probability of committing a type I error and the power through the use of Monte Carlo simulation method. Situations where estimates of the partial regression coefficients may outperform t statistics are discussed.
|
Page generated in 0.0723 seconds