Spelling suggestions: "subject:"multiresolution"" "subject:"multirésolution""
31 |
Análise de distúrbios relacionados com a qualidade da energia elétrica utilizando a transformada Wavelet / Analysis of power quality disturbances using Wavelet transformArruda, Elcio Franklin de 07 April 2003 (has links)
O presente trabalho visa a utilização da transformada Wavelet no monitoramento do sistema elétrico no que diz respeito a problemas de qualidade da energia com o intuito de detectar, localizar e classificar os mesmos. A transformada Wavelet tem surgido na literatura como uma nova ferramenta para análise de sinais, utilizando funções chamadas Wavelet mãe para mapear sinais em seu domínio, fornecendo informações simultâneas nos domínios tempo e freqüência. A transformada Wavelet é realizada através de filtros decompondo-se um dado sinal em análise multiresolução. Por esta, obtém-se a detecção e a localização de distúrbios relacionados com a qualidade da energia decompondo-se o sinal em dois outros que representam uma versão de detalhes (correspondente as altas freqüências do sinal) e uma versão de aproximação (correspondente as baixas freqüências do sinal). A versão de aproximação é novamente decomposta obtendo-se novos sinais de detalhes e aproximações e assim sucessivamente. Sendo assim, os distúrbios podem ser detectados e localizados no tempo em função do seu conteúdo de freqüência. Estas informações fornecem também características únicas pertinentes a cada distúrbio, permitindo classificá-los. Desta forma, propõe-se neste trabalho o desenvolvimento de um algoritmo classificador automático de distúrbios relacionados com a qualidade da energia baseado unicamente nas decomposições obtidas da análise multiresolução. / The aim of the present dissertation is to apply the Wavelet transform to analyze power quality problems, detecting, localizing and classifying them. The topic Wavelet transform, has appeared in the literature as a new tool for the analysis of signals, using functions called mother Wavelet to map signals in its domain, supplying information in the time and frequency domain, simultaneously. Wavelet transform is accomplished through filters decomposing a provided signal in multiresolution analysis. The detection and localization of disturbances are obtained by decomposing a signal into two other signals that represent, a detailed version (high frequency signals) and a smoothed version (low frequency signals). The smoothed version is decomposed again, and new detailed and smoothed signals are obtained. This process is repeated as many times as necessary and the disturbances can be detected and localized in the time as a function of its level frequency. This information also supplies characteristics to each disturbance, allowing classifying them. Thus, this research presents a way to develop an automatic classifying algorithm of power quality disturbances, based only on multiresolution analysis.
|
32 |
Ubiquitous Scalable Graphics: An End-to-End Framework using WaveletsWu, Fan 19 November 2008 (has links)
"Advances in ubiquitous displays and wireless communications have fueled the emergence of exciting mobile graphics applications including 3D virtual product catalogs, 3D maps, security monitoring systems and mobile games. Current trends that use cameras to capture geometry, material reflectance and other graphics elements means that very high resolution inputs is accessible to render extremely photorealistic scenes. However, captured graphics content can be many gigabytes in size, and must be simplified before they can be used on small mobile devices, which have limited resources, such as memory, screen size and battery energy. Scaling and converting graphics content to a suitable rendering format involves running several software tools, and selecting the best resolution for target mobile device is often done by trial and error, which all takes time. Wireless errors can also affect transmitted content and aggressive compression is needed for low-bandwidth wireless networks. Most rendering algorithms are currently optimized for visual realism and speed, but are not resource or energy efficient on mobile device. This dissertation focuses on the improvement of rendering performance by reducing the impacts of these problems with UbiWave, an end-to-end Framework to enable real time mobile access to high resolution graphics using wavelets. The framework tackles the issues including simplification, transmission, and resource efficient rendering of graphics content on mobile device based on wavelets by utilizing 1) a Perceptual Error Metric (PoI) for automatically computing the best resolution of graphics content for a given mobile display to eliminate guesswork and save resources, 2) Unequal Error Protection (UEP) to improve the resilience to wireless errors, 3) an Energy-efficient Adaptive Real-time Rendering (EARR) heuristic to balance energy consumption, rendering speed and image quality and 4) an Energy-efficient Streaming Technique. The results facilitate a new class of mobile graphics application which can gracefully adapt the lowest acceptable rendering resolution to the wireless network conditions and the availability of resources and battery energy on mobile device adaptively."
|
33 |
An Online Strategy for Wavelet Based Analysis of Multiscale Sensor DataBuch, Alok K 30 March 2004 (has links)
Complex industrial processes are represented by data that are well known to be multiscaled due to the variety of events that occur in a process at different time and frequency localizations. Wavelet based multiscale analysis approaches provide an excellent means to examine these events. However, the scope of the existing wavelet based methods in the fields of statistical applications, such as process monitoring and defect identification are still limited. Recent literature contains several wavelet decomposition based multiscale process monitoring approaches including many real life process monitoring applications, such as tool-life monitoring, bearing defect monitoring, and monitoring of ultra-precision processes such as chemical mechanical planarization (CMP) in wafer fabrication. However, all of the above mentioned wavelet based methodologies are offline and depend on the visual observations of the wavelet coefficients and details. The offline analysis paradigm was imposed by the high computation needs of the multiscale analysis, whereas the visual observation based approach was necessitated by the lack of statistical means to identify undesirable events. One of the most recent multiscale application, that deals with detecting delamination in CMP, addressed the need for online analysis by developing a moving window based approach to reduce computation time. This research presents 1) development of a fully online multiscale analysis approach where the speed of wavelet based analysis of the data matches the rate of data generation, 2) development of a statistical tool based on Sequential Probability Ratio Test (SPRT) to detect events of interest, and 3) development of an approach to display the analysis results through real time graphs for ease of process supervisory decision making. The developed methodologies are programmed using MATLAB 6.5 and implemented on several data sets obtained from metal and oxide CMP of wafer fabrication. The results and analysis are presented.
|
34 |
Electronic Excitations in YTiO3 using TDDFT and electronic structure using a multiresolution frameworkThornton, William Scott 01 August 2011 (has links)
We performed ab initio studies of the electronic excitation spectra of the ferro- magnetic, Mott-insulator YTiO3 using density functional theory (DFT) and time- dependent density functional theory (TDDFT). In the ground state description, we included a Hubbard U to account for the strong correlations present within the d states on the cation. The excitation spectra was calculated using TDDFT linear response formalism in both the optical limit and the limit of large wavevector transfer. In order to identify the local d-d transitions in the response, we also computed the density response of YTiO3 using a novel technique where the basis included Wannier functions generated for the Ti and Y sites. Also, we describe the first implementation of the all-electron Kohn-Sham density functional equations in a periodic system using multi-wavelets and fast integral equations using MADNESS (multiresolution adaptive numerical environment for scientific simulation; http://code.google.com/p/m-a-d-n- e-s-s). This implementation is highlighted by the real space lattice sums involved in the application of the Coulomb and bound state Helmlholtz integral operators.
|
35 |
Modeling Neurons That Can Self Organize Into Building Blocks And Hierarchies: An Exploration Based On Visual SystemsPolat, Aydin Goze 01 September 2012 (has links) (PDF)
Cell-cell and cell-environment interactions are controlled by a set of local rules that dictate cell behavior. With such local rules, emergence of computationally meaningful building blocks and hierarchies can be observed. For example, at the cellular level organization in the visual system, receptive field of a retinal ganglion cell displays an activation inhibition behavior that can be modeled as Mexican Hat wavelet or Difference of Gaussians. This precise organization is the product of a harmonious collaboration of different cell types located at the lower levels in a hierarchical structure for each ganglion cell. Moreover, a similar hierarchical organization is observed at higher levels in the visual system. This thesis investigates the visual system from several perspectives in an effort to explore the biological/computational principles underlying these local rules. The investigation results in a hybrid computer model that can combine the advantages of evolutionary and developmental principles to explore the effects of local rules on cellular differentiation, retinal mosaics, layered structures and network topology.
|
36 |
Fast Adaptive Numerical Methods for High Frequency Waves and Interface TrackingPopovic, Jelena January 2012 (has links)
The main focus of this thesis is on fast numerical methods, where adaptivity is an important mechanism to lowering the methods' complexity. The application of the methods are in the areas of wireless communication, antenna design, radar signature computation, noise prediction, medical ultrasonography, crystal growth, flame propagation, wave propagation, seismology, geometrical optics and image processing. We first consider high frequency wave propagation problems with a variable speed function in one dimension, modeled by the Helmholtz equation. One significant difficulty of standard numerical methods for such problems is that the wave length is very short compared to the computational domain and many discretization points are needed to resolve the solution. The computational cost, thus grows algebraically with the frequency w. For scattering problems with impenetrable scatterer in homogeneous media, new methods have recently been derived with a provably lower cost in terms of w. In this thesis, we suggest and analyze a fast numerical method for the one dimensional Helmholtz equation with variable speed function (variable media) that is based on wave-splitting. The Helmholtz equation is split into two one-way wave equations which are then solved iteratively for a given tolerance. We show rigorously that the algorithm is convergent, and that the computational cost depends only weakly on the frequency for fixed accuracy. We next consider interface tracking problems where the interface moves by a velocity field that does not depend on the interface itself. We derive fast adaptive numerical methods for such problems. Adaptivity makes methods robust in the sense that they can handle a large class of problems, including problems with expanding interface and problems where the interface has corners. They are based on a multiresolution representation of the interface, i.e. the interface is represented hierarchically by wavelet vectors corresponding to increasingly detailed meshes. The complexity of standard numerical methods for interface tracking, where the interface is described by marker points, is O(N/dt), where N is the number of marker points on the interface and dt is the time step. The methods that we develop in this thesis have O(dt^(-1)log N) computational cost for the same order of accuracy in dt. In the adaptive version, the cost is O(tol^(-1/p)log N), where tol is some given tolerance and p is the order of the numerical method for ordinary differential equations that is used for time advection of the interface. Finally, we consider time-dependent Hamilton-Jacobi equations with convex Hamiltonians. We suggest a numerical method that is computationally efficient and accurate. It is based on a reformulation of the equation as a front tracking problem, which is solved with the fast interface tracking methods together with a post-processing step. The complexity of standard numerical methods for such problems is O(dt^(-(d+1))) in d dimensions, where dt is the time step. The complexity of our method is reduced to O(dt^(-d)|log dt|) or even to O(dt^(-d)). / <p>QC 20121116</p>
|
37 |
Optimal Multiresolution Quantization for Broadcast Channels with Random Index AssignmentTeng, Fei 06 August 2010 (has links)
Shannon's classical separation result holds only in the limit of infinite source code dimension and infinite channel code block length. In addition, Shannon theory does not address the design of good source codes when the probability of channel error is nonzero, which is inevitable for finite-length channel codes. Thus, for practical systems, a joint source and channel code design could improve performance for finite dimension source code and finite block length channel code, as well as complexity and delay.
Consider a multicast system over a broadcast channel, where different end users typically have different capacities. To support such user or capacity diversity, it is desirable to encode the source to be broadcasted into a scalable bit stream along which multiple resolutions of the source can be reconstructed progressively from left to right. Such source coding technique is called multiresolution source coding. In wireless communications, joint source channel coding (JSCC) has attracted wide attention due to its adaptivity to time-varying channels. However, there are few works on joint source channel coding for network multicast, especially for the optimal source coding over broadcast channels.
In this work, we aim at designing and analyzing the optimal multiresolution vector quantization (MRVQ) in conjunction with the subsequent broadcast channel over which the coded scalable bit stream would be transmitted. By adopting random index assignment (RIA) to link MRVQ for the source with superposition coding for the broadcast channel, we establish a closed-form formula of end-to-end distortion for a tandem system of MRVQ and a broadcast channel. From this formula we analyze the intrinsic structure of end-to-end distortion (EED) in a communication system and derive two necessary conditions for optimal multiresolution vector quantization over broadcast channels with random index assignment. According to the two necessary conditions, we propose a greedy iterative algorithm for jointly designed MRVQ with channel conditions, which depends on the channel only through several types of average channel error probabilities rather than the complete knowledge of the channel. Experiments show that MRVQ designed by the proposed algorithm significantly outperforms conventional MRVQ designed without channel information.
By building an closed-form formula for the weighted EED with RIA, it also makes the computational complexity incurred during the performance analysis feasible. In comparison with MRVQ design for a fixed index assignment, the computation complexity for quantization design is significantly reduced by using random index assignment. In addition, simulations indicate that our proposed algorithm shows better robustness against channel mismatch than MRVQ design with a fixed index assignment, simply due to the nature of using only the average channel information. Therefore, we conclude that our proposed algorithm is more appropriate in both wireless communications and applications where the complete knowledge of the channel is hard to obtain.
Furthermore, we propose two novel algorithms for MRVQ over broadcast channels. One aims to optimize the two corresponding quantizers at two layers alternatively and iteratively, and the other applies under the constraint that each encoding cell is convex and contains the reconstruction point. Finally, we analyze the asymptotic performance of weighted EED for the optimal joint MRVQ. The asymptotic result provides a theoretically achievable quantizer performance level and sheds light on the design of the optimal MRVQ over broadcast channel from a different aspect.
|
38 |
Multiresolution Formation Preserving Path Planning In 3-d Virtual EnvironmentsHosgor, Can 01 September 2011 (has links) (PDF)
The complexity of the path finding and navigation problem increases when multiple agents
are involved and these agents have to maintain a predefined formation while moving on a
3-D terrain. In this thesis, a novel approach for multiresolution formation representation is
proposed, that allows hierarchical formations of arbitrary depth to be defined using different
referencing schemes. This formation representation approach is then utilized to find and
realize a collision free optimal path from an initial location to a goal location on a 3-D terrain,
while preserving the formation. The proposed metod first employs a terrain analysis technique
that constructs a weighted search graph from height-map data. The graph is used by an off-line
search algorithm to find the shortest path. The path is realized by an on-line planner, which
guides the formation along the path while avoiding collisions and maintaining the formation.
The methods proposed here are easily adaptable to several application areas, especially to real
time strategy games and military simulations.
|
39 |
Optimal Multiresolution Quantization for Broadcast Channels with Random Index AssignmentTeng, Fei 06 August 2010 (has links)
Shannon's classical separation result holds only in the limit of infinite source code dimension and infinite channel code block length. In addition, Shannon theory does not address the design of good source codes when the probability of channel error is nonzero, which is inevitable for finite-length channel codes. Thus, for practical systems, a joint source and channel code design could improve performance for finite dimension source code and finite block length channel code, as well as complexity and delay.
Consider a multicast system over a broadcast channel, where different end users typically have different capacities. To support such user or capacity diversity, it is desirable to encode the source to be broadcasted into a scalable bit stream along which multiple resolutions of the source can be reconstructed progressively from left to right. Such source coding technique is called multiresolution source coding. In wireless communications, joint source channel coding (JSCC) has attracted wide attention due to its adaptivity to time-varying channels. However, there are few works on joint source channel coding for network multicast, especially for the optimal source coding over broadcast channels.
In this work, we aim at designing and analyzing the optimal multiresolution vector quantization (MRVQ) in conjunction with the subsequent broadcast channel over which the coded scalable bit stream would be transmitted. By adopting random index assignment (RIA) to link MRVQ for the source with superposition coding for the broadcast channel, we establish a closed-form formula of end-to-end distortion for a tandem system of MRVQ and a broadcast channel. From this formula we analyze the intrinsic structure of end-to-end distortion (EED) in a communication system and derive two necessary conditions for optimal multiresolution vector quantization over broadcast channels with random index assignment. According to the two necessary conditions, we propose a greedy iterative algorithm for jointly designed MRVQ with channel conditions, which depends on the channel only through several types of average channel error probabilities rather than the complete knowledge of the channel. Experiments show that MRVQ designed by the proposed algorithm significantly outperforms conventional MRVQ designed without channel information.
By building an closed-form formula for the weighted EED with RIA, it also makes the computational complexity incurred during the performance analysis feasible. In comparison with MRVQ design for a fixed index assignment, the computation complexity for quantization design is significantly reduced by using random index assignment. In addition, simulations indicate that our proposed algorithm shows better robustness against channel mismatch than MRVQ design with a fixed index assignment, simply due to the nature of using only the average channel information. Therefore, we conclude that our proposed algorithm is more appropriate in both wireless communications and applications where the complete knowledge of the channel is hard to obtain.
Furthermore, we propose two novel algorithms for MRVQ over broadcast channels. One aims to optimize the two corresponding quantizers at two layers alternatively and iteratively, and the other applies under the constraint that each encoding cell is convex and contains the reconstruction point. Finally, we analyze the asymptotic performance of weighted EED for the optimal joint MRVQ. The asymptotic result provides a theoretically achievable quantizer performance level and sheds light on the design of the optimal MRVQ over broadcast channel from a different aspect.
|
40 |
Multiresolution pour la Visualisation ScientifiqueBonneau, Georges-Pierre 26 June 2000 (has links) (PDF)
Les travaux de recherche dont ce mémoire est l'objet sont dédiés à la visualisation à différents niveaux de détail de données scientifiques. Les données scientifiques abordées sont de deux types. Les premières sont définies sur des grilles tridimensionnelles uniformes; le domaine d'application correspondant étant alors la visualisation de données d'origines médicales provenant de coupes tomographiques ou de scanners IRM. Les secondes sont définies sur des réseaux triangulaires irréguliers, planaires ou sphériques; les domaines d'applications correspondants étant entre autres la visualisation de données topographiques (terrain visualization), ou encore de données provenant de calculs par éléments finis.
|
Page generated in 0.0913 seconds