Spelling suggestions: "subject:"detype"" "subject:"botype""
51 |
Simulation and process development for ion-implanted N-type silicon solar cellsNing, Steven 11 April 2013 (has links)
As the efficiency potential for the industrial P-type Al-BSF silicon solar cell reaches its limit, new solar cell technologies are required to continue the pursuit of higher efficiency solar power at lower cost. It has been demonstrated in literature that among possible alternative solar cell structures, cells featuring a local BSF (LBSF) have demonstrated some of the highest efficiencies seen to date. Implementation of this technology in industry, however, has been limited due to the cost involved in implementing the photolithography procedures required. Recent advances in solar cell doping techniques, however, have identified ion implantation as a possible means of performing the patterned doping required without the need for photolithography.
In addition, past studies have examined the potential for building solar cells on N-type silicon substrates, as opposed to P-type. Among other advantages, it is possible to create N-type solar cells which do not suffer from the efficiency degradation under light exposure that boron-doped P-type solar cells are subject to. Industry has not been able to capitalize on this potential for improved solar cell efficiency, in part because the fabrication of an N-type solar cell requires additional masking and doping steps compared to the P-type solar cell process. Again, however, recent advances in ion implantation for solar cells have demonstrated the possibility for bypassing these process limitations, fabricating high efficiency N-type cells without any masking steps.
It is clear that there is potential for ion implantation to revolutionize solar cell manufacturing, but it is uncertain what absolute efficiency gains may be achieved by moving to such a process. In addition to development of a solar specific ion implant process, a number of new thermal processes must be developed as well. With so many parameters to optimize, it is highly beneficial to have an advanced simulation model which can describe the ion implant, thermal processes, and cell performance accurately. Toward this goal, the current study develops a process and device simulation model in the Sentaurus TCAD framework, and calibrates this model to experimentally measured cells. The study focuses on three main tasks in this regard:
Task I - Implant and Anneal Model Development and Validation
This study examines the literature in solar and microelectronics research to identify features of ion implant and anneal processes which are pertinent to solar cell processing. It is found that the Monte Carlo ion implant models used in IC fabrication optimization are applicable to solar cell manufacture, with adjustments made to accommodate for the fact that solar cell wafers are often pyramidally textured instead of polished. For modeling the thermal anneal processes required after ion implant, it is found that the boron and phosphorus cases need to be treated separately, with their own diffusion models.
In particular, boron anneal simulation requires accurate treatment of boron-interstitial clusters (BICs), transient enhanced diffusion, and dose loss. Phosphorus anneal simulation requires treatment of vacancy and interstitial mediated diffusion, as well as dose loss and segregation. The required models are implemented in the Sentaurus AdvancedModels package, which is used in this study. The simulation is compared to both results presented in literature and physical measurements obtained on wafers implanted at the UCEP. It is found that good experimental agreement may be obtained for sheet resistance simulations of implanted wafers, as well as simulations of boron doping profile shape. The doping profiles of phosphorus as measured by the ECV method, however, contain inconsistencies with measured sheet resistance values which are not explained by the model.
Task II - Device Simulation Development and Calibration
This study also develops a 3D model for simulation of an N-type LBSF solar cell structure. The 3D structure is parametrized in terms of LBSF dot width and pitch, and an algorithm is used to generate an LBSF structure mesh with this parametrization. Doping profiles generated by simulations in Task I are integrated into the solar cell structure. Boundary conditions and free electrical parameters are calibrated using data from similar solar cells fabricated at the UCEP, as well as data from lifetime test wafers. This simulation uses electrical models recommended in literature for solar cell simulation.
It is demonstrated that the 3D solar cell model developed for this study accurately reproduces the performance of an implanted N-type full BSF solar cell, and all parameters fall within ranges expected from theoretical calculations. The model is then used to explore the parameter space for implanted N-type local BSF solar cells, and to determine conditions for optimal solar cell performance. It is found that adding an LBSF to the otherwise unchanged baseline N-type cell structure can produce almost 1% absolute efficiency gain. An optimum LBSF dot pitch of 450um at a dot size of 100um was identified through simulation. The model also reveals that an LBSF structure can reduce the fill factor of the solar cell, but this effect can be offset by a gain in Voc. Further efficiency improvements may be realized by implementing a doping-dependent SRV model and by optimizing the implant dose and thermal anneal.
Task III - Development of a Procedure for Ion Implanted N-type LBSF Cell Fabrication
Finally, this study explores a method for fabrication of ion-implanted N-type LBSF solar cells which makes use of photolithographically defined nitride masks to perform local phosphorus implantation. The process utilizes implant, anneal, and metallization steps previously developed at the UCEP, as well as new implant masking steps developed in the course of this study. Although an LBSF solar cell has not been completely fabricated, the remaining steps of the process are successfully tested on implanted N-type full BSF solar cells, with efficiencies reaching 20.0%.
|
52 |
Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beadsMuchindu, Munkombwe January 2010 (has links)
<p>Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3 &minus / ) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate (PSNP-OSO3 &minus / ) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 &minus / ) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10&minus / 8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were < / 100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 &mu / A/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 &mu / M NO2 &minus / , were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 &minus / , respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors.</p>
|
53 |
Channel Specific Calcium Dynamics in PC12 Cells: A DissertationTully, Keith 21 May 2004 (has links)
Calcium ions (Ca2+) are involved in almost all neuronal functions, providing the link between electrical signals and cellular activity. This work examines the mechanisms by which a neuron can regulate the movement and sequestration of Ca2+ through specific channels such that this ubiquitous ion can encode specific functions. My initial focus was using intracellular calcium ([Ca2+]i) imaging techniques to study the influence of the inhibition of specific voltage gated calcium channels (VGCC) by ethanol on a depolarization induced rise in [Ca2+]i in neurohypophysial nerve terminals. This research took an unexpected turn when I observed an elevation of [Ca2+]i during perfusion with ethanol containing solutions. Control experiments showed this to be an artifactual result not directly attributable to ethanol. It was necessary to track down the source of this artifact in order to proceed with future ethanol experiments. The source of the artifact turned out to be a contaminant leaching from I.V. drip chambers. Due to potential health implications stemming from the use of these drip chambers in a clinical setting as well as potential artifactual results in the ethanol field where these chambers are commonly used, I choose to investigate this phenomenon more rigorously. The agent responsible for this effect was shown to be di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer that has been shown to be carcinogenic in rats and mice. The extraction of this contaminant from the I.V. drip chamber, as measured by spectrophotometry, was time-dependent, and was markedly accelerated by the presence of ethanol in the solution. DEHP added to saline solution caused a rise in [Ca2+]i similar to that elicited by the contaminant containing solution. The rise in calcium required transmembrane flux through membrane channels. Blood levels of DEHP in clinical settings have been shown to exceed the levels which we found to alter [Ca2+]i. This suggests that acute alterations in intracellular calcium should be considered in addition to long-term effects when determining the safety of phthalate-containing plastics.
As part of a collaboration between Steven Treistman and Robert Messing's laboratory at UCSF, I participated in a study of how ethanol regulates N-type calcium channels which are known to be inhibited acutely, and upregulated in the chronic presence of ethanol. Specific mRNA splice variants encoding N-type channels were investigated using ribonuclease protection assays and real-time PCR. Three pairs of N-type specific α-subunit Cav2.2 splice variants were examined, with exposure to ethanol observed to increase expression of one alternative splice form in a linker that lacks six bases encoding the amino acids glutamate and threonine (ΔET). Whole cell electrophysiological recordings that I carried out demonstrated a faster rate of channel activation and a shift in the voltage dependence of activation to more negative potentials after chronic alcohol exposure, consistent with increased expression of ΔET variants. These results demonstrate that chronic ethanol exposure not only increases the abundance of N-type calcium channels, but also increases the expression of a Cav2.2 splice variant with kinetics predicted to support a larger and faster rising intracellular calcium signal. This is the first demonstration that ethanol can up-regulate ion channel function through expression of a specific mRNA splice variant, defining a new mechanism underlying the development of drug addiction.
Depolarizing a neuron opens voltage gated Ca2+ channels (VGCC), leading to an influx of Ca2+ ions into the cytoplasm, where Ca2+ sensitive signaling cascades are stimulated. How does the ubiquitous calcium ion selectively modulate a large array of neuronal functions? Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca2+ current and the resulting rise and decay of [Ca2+]i, showing that equal amounts of Ca2+ entering through N-type and L-type voltage gated Ca2+ channels result in significantly different [Ca2+]i temporal profiles. When the contribution of N-type channels was reduced, a faster [Ca2+]i decay was observed. Conversely, when the contribution of L-type channels was reduced, [Ca2+]i decay was slower. Potentiating L-type current or inactivating N-type channels both resulted in a more rapid decay of [Ca2+]i. Channel-specific differences in [Ca2+]i decay rates were abolished by depleting intracellular Ca2+ stores suggesting the involvement of Ca2+-induced Ca2+ release (CICR). I was able to conclude that Ca2+ entering through N-type, but not L-type channels, is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR generates a unique intracellular Ca2+ signal depending on the route of entry, potentially encoding the selective activation of a subset of Ca2+ -sensitive processes within the neuron.
|
54 |
Faisabilité de transistors organiques à effet de champ fabriqués entièrement en solution / Feasibility of solution processed organic field-effect transistorsKuai, Wenlin 23 January 2017 (has links)
Le travail entre dans le cadre de la nouvelle tendance à la recherche d’une électronique mécaniquement flexible basée sur des transistors en couche mince constitués uniquement de matériaux organiques (OTFT). OTFT de type n et de type p ont été fabriqués par la technique de dépôt par impression (inkjet) et étudiés. Les paramètres d’impression (jetabilité, mouillabilité, imprimabilité et possibilité d’obtention de différentes formes), de chaque encre permettant le dépôt de couches conductrices, isolantes et semiconductrices, ont été systématiquement étudiés. Les OTFT de type n basés sur du C60 se sont montrés non fiables, principalement du fait de la faible solubilité du C60 dans les solvants organiques. Les OTFT de type basés sur du Tips-pentacene ont montré par contre une grande fiabilité. Le travail global constitue une large revue des problèmes et difficultés rencontrés dans la fabrication de transistors fabriqués entièrement par impression jet d’encre. Des solutions ont été trouvées et de nouvelles idées sont proposées. / Present work deals with the new trend to get highly flexible electronics by using fully Organic Thin-Film Transistor (OTFT) as the basic element of this electronics. Fully organic n-type as well as p-type OTFT processed by inkjet printing are studied. Printing parameters of each ink, jettability, wetting, printability, and patterns optimization, leading to the deposition of conductive contacts, gate insulator and semiconducting active layer are studied. Process of n-type OTFT based on C60 is shown as unreliable, mainly due to the poor solubility of C60 in organic solvent. In the contrary, p-type OTFTs based on Tips-pentacene are much more reliable. The work is a large overview of the issues and the difficulties that have been to jump and to solve in the way to fabricate fully printed organic transistors. Some solutions have been given and new ideas have been proposed.
|
55 |
Tensile-strained and highly n-doped Germanium for optoelectronic applicationsZrir, Mohammad ali 18 September 2015 (has links)
Dans le cadre de ce travail de thèse, nous avons étudié une approche permettant de réaliser les composants d'émission de la lumière basés sur les couches epitaxiées de Ge contraint en tension et fortement dopé de type n. Afin de créer de contrainte en tension dans les films épitaxiés de Ge, nous avons investi deux méthodes : faire croître du Ge sur InGaAs ayant un paramètre de maille plus grand que celui de Ge, et faire croître du Ge sur Si, en prenant l'avantage du coefficient de dilatation thermique du Ge, qui est deux fois plus grand que celui du Si. Concernant la croissance de Ge sur les substrats Si, nous avons étudié deux orientations cristallines, <001> and <111>, afin de pouvoir comparer la valeur de contrainte en tension obtenue et aussi la densité des dislocations émergeantes. Le dopage de type n dans le Ge a été effectué en utilisant le phosphore et l'antimoine. Nous avons montré que quand le dopage est effectué à des températures relativement basses et suivi d'un recuit thermique rapide, de concentration d'électrons électriquement activés de ~ 4x10^19 cm-3, a pu être obtenue. Cette valeur représente l'un des meilleurs résultats expérimentalement obtenus jusqu'à présent. Des mesures de recombinaison radiative par spectroscopie de photoluminescence effectuées à température ambiante ont mis en évidence une augmentation de l'émission du gap direct de Ge d'environ 150 fois. Finalement, nous avons étudié les effets de la barrière de diffusion sur l'efficacité de dopage pendant les recuits thermiques. Une comparaison sur l'efficacité de trois barrières de diffusion, Al2O3, HfO2 and Si3N4, sera présentée et discutée. / During my thesis, we studied approaches to achieve light-emitting devices based on tensile strained and highly n-doped Ge epitaxial films. In order to create an elastic tensile strain in the epitaxial Ge films, we have investigated two methods: The epitaxial growth of Ge on InGaAs buffer layers that have a larger lattice constant, and the epitaxial growth of Ge on Si, by which we take benefit of the thermal expansion coefficient of Ge which is twice greater than that of Si. Concerning the growth of Ge on Si substrates, we have studied two crystalline orientations, <001> and <111>, in order to compare the values of the accumulated tensile strain and also the density of threading dislocations. The n-type doping in Ge was performed using a co-doping technique with phosphorus (P2 molecule) and antimony (Sb). We demonstrated that the dopants sticking coefficient leads to dopant incorporation in the Ge film larger than their solid solubility, which generally increases with increasing substrate temperature. As a result, when the doping is carried out at relatively low temperatures and followed by rapid thermal annealing, electrically activated electron concentration of 4x1019 cm-3 was demonstrated. This value is one of the best results obtained experimentally so far. The radiative recombination, at RT, measured by photoluminescence spectroscopy showed an increase in the direct gap emission of Ge of about 150 times. Finally, we studied the effects of diffusion barrier on the doping concentration during the thermal annealing. A comparison between the advantages of three diffusion barriers, Al2O3, HfO2 and Si3N4, will be presented and discussed.
|
56 |
Solární články z monokrystalického křemíku typu n s vysokou účinností / High Efficiency n-type Monocrystalline Silicon Solar CellsMojrová, Barbora January 2019 (has links)
Tato dizertační práce je zaměřena vývoj a ověřování nových postupů přispívajících ke zvýšení účinnosti bifaciálních solárních článků založených na monokrystalickém křemíku n-typové vodivosti. Tato práce přináší nové poznatky o vylepšených výrobních procesech a postupech použitých během výroby článků v ISC Konstanz. V rámci práce byly vyrobeny solární články typu n-PERT (Passivated Emitter Rear Totally diffused) s vysokou účinností, a to pomocí standartních procesů a zařízení používaných běžně při průmyslové výrobě. Zapojení těchto průmyslových postupů a metod umožnilo ověřit možnosti výroby n-typových článků za použití téměř totožného vybavení, jaké je potřeba pro výrobu p-typových článků. Zvýšení účinnosti bylo založeno především na vylepšení jednotlivých procesních kroků. Experimenty popsané v této práci dosvědčují zlepšení procesu difúze bóru, přizpůsobení parametrů pasivační a antireflexní vrstvy nově navrženému emitoru, zlepšení procesu metalizace ve smyslu využití past neobsahujících hliník, testování tisku rozličných motivů spolu s různými sekvencemi výpalu. V rámci práce byla testována možnost zamezení jevu potenciální indukované degradace (Potential Induced Degradation – PID) pomocí vhodného složení ARC a pasivační vrstvy. Vyrobené n-typové solární články dosáhly maximální hodnoty účinnosti 20,9 %.
|
57 |
Photovoltaic and gas sensing applications of transitional metal nanocomposites of poly(3-hexylthiophene)-titanium dioxideMaake, Popoti Jacqueline January 2021 (has links)
>Magister Scientiae - MSc / This thesis starts with the reviewing of studies on the loading of noble metals and nanostructured metal oxides into bulk heterojunction organic solar cell device architectures. The reviews focused on the innovative developments in the use of various fullerene derivatives as electron acceptors in organic solar cells. It additionally reflected on the effect of metallic nanoparticles (NPs), such as gold (Au) and silver (Ag), on the performance of organic solar cells. Besides the metallic NPs, the effect of metal oxide nanoparticle loading, e.g. CuO, ZnO and TiO2, on the organic solar cell performance, and the use of noble metals doped TiO2 on the gas sensing application were reviewed. / 2024
|
58 |
M<sub>1</sub> Muscarinic Modulation of N-Type Calcium Channels: A DissertationHeneghan, John F. 06 November 2006 (has links)
The influx of calcium through N-type calcium channels (N-current) affects a myriad of neuronal functions. These include the triggering of synaptic release of neurotransmitter, adjustment of membrane potential and changes in gene transcription. N-channels are highly modulated proteins, so that N-current is attenuated or potentiated in response to environmental changes. In turn, the modulation of N-current has a direct effect on the downstream events, making the N-channel a focal point in neural signaling, and its modulation a mechanism for short term plasticity.
The modulation of N-current by M1 muscarinic receptors (M1Rs) is of particular interest for several reasons. The M1R is instrumental in both cognition and memory formation as indicated by studies using either pharmacological agents aimed at M1Rs or knockout animals lacking M1Rs. Clinically, the M1R is an important target in the treatment of Alzheimer’s disease. Thus, like the N-channel, the M1R is an important element of neural signaling. Moreover, the stimulation of M1Rs affects N-current by through signaling pathways which despite being studied for decades, are not completely understood.
For my dissertation I have investigated of M1R signaling on N-current using electrophysiological recordings of N-current from freshly dissociated neurons and from HEK cells expressing N-channels and M1Rs. Asking how one receptor affects one type of calcium channel would seem to be a simple question. However, the answer has many facets. Since M1Rs have multiple downstream effects and N-channels are highly modulated proteins, stimulation of M1Rs initiates several different pathways which modulate N-current. This thesis aims to unravel some of the complexities of the interactions of two vital components of neuronal signaling. Here I present the results of studies elucidating three different actions of M1signaling of N-current modulation.
The first study I present here examines the effect of N-channel subunit composition on modulation of N-current. The stimulation of M1Rs in superior cervical ganglion (SCG) neurons elicits a distinct pattern of modulation; inhibiting N-current elicited by strong depolarizations and enhancing current elicited by lesser depolarizations. Thus M1Rs cause two simultaneous modulatory effects on N-current; increasing voltage sensitivity and decreasing overall conductance. I found the expression of the N-channel’s β subunit (CaVβ) determines the observed effect. Specifically when the isoform CaVβ2a is expressed M1 stimulation elicits enhancement without inhibition. Conversely, when CaVβ1b, CaVβ3, or CaVβ4 are expressed M1 stimulation elicits inhibition with out enhancement. These results fit a model in which both the enhancing and inhibiting effects of M1stimulation occur in all channels, but typically inhibition dominates. CaVβ2a blocks inhibition unmasking latent enhancement. Moreover, using mutants and chimeras I found palmitoylation of CaVβ2a at the N-terminus plays a key role in blocking inhibition. My findings predict the expression and localization of different CaVβ isoforms would dramatically alter modulation of N-current and thus may represent a previously unrecognized form of plasticity.
The inhibition of N-current by M1Rs is controversial. It has been proposed recently that inhibition is directly attributable to the depletion of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during M1 stimulation. However, in our lab, we have found arachidonic acid (AA) release, which occurs subsequent to PtdIns(4,5)P2 hydrolysis, is both necessary and sufficient to elicit inhibition. Therefore, in a second study, I tested the effect of CaVβ expression on N-current during exogenous AA application and found a pattern of modulation identical to M1R stimulation. Furthermore, I took part in a collaborative project identifying the AA producing enzyme, diacylglycerol lipase (DAGL), to be a necessary component of the inhibitory pathway elicited by M1Rs. These findings provide increased evidence for AA release being a key factor in the M1R stimulated pathway of inhibition. Moreover, these discoveries identify the expression of CaVβ2a and use of specific DAGL inhibitors as a molecular and pharmacological strategy to block inhibition of N-current, respectively. These tools allow the dissection of downstream effects of M1R stimulation, so that other modulatory effects may be observed.
The phosphorylation of N-channels by protein kinase C (PKC) blocks inhibition of current brought on by G-protein β and γ subunits (Gβγ) binding directly to the channel. Relief of Gβγ inhibition by other means has been identified as a mechanism of short term plasticity. M1Rs are known to simulate PKC, but a connection between M1Rs and PKC phosphorylation of Nchannels had not been demonstrated. I hypothesized that PKC stimulation may be occluded by other downstream effects of M1Rs. Therefore in a third study, I used a pharmacological approach on SCG neurons to dissect the PKC activating pathway from the other downstream effects of M1 stimulation. I observed modulation of N-current indicating a loss of Gβγ&#; inhibition, thus consistent with PKC phosphorylation of channels. This conclusion reveals another aspect of M1 modulation, which can function as a means of short term plasticity.
|
59 |
Tailored carbon based nanostructures as components of flexible thermoelectric and other devicesLiu, Ye 15 February 2019 (has links)
Carbon based nanostructures, such as fullerenes, carbon nanotubes and graphene showed a high potential for a vast of electronic and energy applications. However, properties of such materials in pristine forms can be insufficient to satisfy diverse specific demands, and tailoring their intrinsic properties is of increasing importance. In this work, different types of single-walled carbon nanotubes (SWCNTs) with controlled semiconducting fractions are p-/n-type doped by chemical doping in an attempt to tailor physical properties of the SWCNTs for the use in flexible thermoelectric (TE) devices and thermoplastic polymer-based conducting composites. Several p-/n-type doping schemes and an electronic type separation strategy have been developed to fulfill the task. A complete solution for efficient and scalable production of doped SWCNTs for the fabrication of flexible thermoelectric components is developed in this work.
For p-type doping, a combined experimental and theoretical work demonstrates that boron atomic doping is an efficient way to simultaneously improve Seebeck coefficient (S) and electrical conductivity (σ) of SWCNT films, showing an increased thermoelectric power factor (S2σ) up to 255 μW/mK2 by a factor of 2.5 comparing to the pristine SWCNTs. For n-type doping, treatment of SWCNTs with potassium oxide and crown ether solution lead to a negative Seebeck coefficient of -30 μV/K and a promising S2σ up to 50 μW/mK2.
A gel chromatography method has been developed to separate large-diameter (1.2-1.8nm) SWCNTs by electronic properties and to increase the purity of the sorted semiconducting carbon nanotubes (sc-SWCNTs) up to 95%.
Effects of p-/n-type doping induced by different plasma treatments on the thermoelectric properties have been investigated for thin films made of sorted sc-SWCNTs. The high-purity sc-SWCNTs show significantly improved S of 125 μV/K. As the effects of p-type doping, air plasma treatments with proper duration (40s) lead to the increase of S, σ and thus S2σ up to 190 μW/mK2. The n-type doping for the SWCNT films have been performed via ammonia plasma treatment, and a negative S value of -80 μV/K has been achieved in air at 110oC, which is one of the best values ever reported for n-type carbon nanotube films.
A flexible thermoelectric module was fabricated by printing ink made of the prepared boron doped SWCNTs and an organic solvent as an example for producing efficient all-carbon thermoelectric generators. At a temperature difference ΔT=60 K, the output voltage reaches 20 mV and the power output of 400 nW is obtained, although no “n”-legs are used in this module.
At last, a work has been done on the development of melt mixed composites as TE materials, in which polypropylene is used as the matrix and boron-doped SWCNTs are used as conducting fillers. A percolation threshold lower than 0.25wt. % and a maximum conductivity up to 125 S/m at 5wt. % of SWCNT load have been achieved. The maximum conductivity is more than two times higher than that of the composites made with pristine SWCNTs as fillers.
|
60 |
Highly-doped germanium nanowires: fabrication, characterization, and applicationEchresh, Ahmad 25 July 2023 (has links)
Germanium (Ge) is the most compatible semiconductor material with silicon-based complementary metal-oxide semiconductor technology, which has higher electron and hole mobility than Si, leading to enhanced device performance. In addition, semiconductor nanowires (NWs) have attracted significant attention as promising candidates for next-generation nanoscale devices. Due to their unique geometry and physical properties, NWs show excellent optical and electrical properties such as quantum size effects, enhanced light absorption, and high biological and chemical sensitivity. Furthermore, high response to light irradiation is one of the most significant properties of semiconductor NWs, which makes them excellent candidates for photodetectors. Hence, Ge NWs are promising high-mobility nanostructures for optoelectronic devices.
Despite constant improvement in the performance of single NW-based devices, determining their electrical properties remains challenging. Here, a symmetric six-contact Hall bar configuration is developed for top-down fabricated highly doped Ge NWs with different widths down to 30 nm, which simultaneously facilitates Hall effect and four-probe resistance measurements. Furthermore, accurate control of doping and fabrication of metal contacts on n-type doped Ge NWs with low resistance and linear characteristics remain significant challenges in Ge-based devices. Therefore, a combined approach is reported to fabricate Ohmic contacts on n-type doped Ge NWs using ion implantation and rear-side flash lamp annealing. This approach allows the fabrication of axial p–n junctions along the single NWs with different widths. The fabricated devices demonstrated rectifying characteristics in dark conditions. The photoresponse of the axial p–n junction photodetectors was investigated under three different illumination wavelengths of 637 nm, 785 nm, and 1550 nm. Moreover, the fabricated axial p–n junction photodetector demonstrated a high-frequency response up to 1 MHz at zero bias.
|
Page generated in 0.0349 seconds