• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 17
  • 15
  • 15
  • 14
  • 13
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nitric oxide enhances transmitter release at the mammalian neuromuscular junction via a cGMP-mediated mechanism

Nickels, Travis John 24 April 2006 (has links)
No description available.
32

Search for Resonant Impurities in Bismuth and Bismuth-Antimony Alloys: Lithium, Magnesium, and Sodium

Orovets, Christine M. 22 June 2012 (has links)
No description available.
33

Investigation of doped ZnO by Molecular Beam Epitaxy for n- and p-type Conductivity

Liu, Huiyong 01 January 2012 (has links)
This dissertation presents an investigation of the properties, especially the electrical properties, of doped ZnO films grown by plasma-assisted molecular beam epitaxy (MBE) under different conditions. The interest in investigating ZnO films is motivated by the potential of ZnO to replace the currently dominant ITO in industries as n-type transparent electrodes and the difficulty in achieving reliable and reproducible p-type ZnO. On the one hand, n-type ZnO heavily doped with Al or Ga (AZO or GZO) is the most promising to replace ITO due to the low cost, abundant material resources, non-toxicity , high conductivity, and high transparency. On the other hand, ZnO doped with a large-size-mismatched element of Sb (SZO) or co-doped with N and Te exhibits the possibility of achieving p-type ZnO. In this dissertation, the effects of MBE growth parameters on the properties of GZO have been investigated in detail. The ratio of oxygen to metal (Zn+Ga) was found to be critical in affecting the structural, electrical, and optical properties of GZO layers as revealed by x-ray diffraction (XRD), transmission electron microscopy (TEM), Hall measurement, photoluminescence (PL), and transmittance measurements. Highly conductive (~2×10-4 Ω-cm) and transparent GZO films (> 90% in the visible spectral range) were achieved by MBE under metal-rich conditions (reactive oxygen to incorporated Zn ratio < 1). The highly conductive and transparent GZO layers grown under optimized conditions were applied as p-side transparent electrodes in InGaN-LEDs, which exhibited many advantages over the traditional thin semi-transparent Ni/Au electrodes. The surface morphologies of GaN templates were demonstrated to be important in affecting the structural and electrical properties of GZO layers. In those highly conductive and transparent GZO layers with high-quality crystalline structures, studies revealed ionized impurity scattering being the dominant mechanism limiting the mobility in the temperature range of 15-330 K, while polar optical phonon scattering being the mechanism responsible for the temperature-dependence for T>150 K. The majority Sb ions were found to reside on Zn sites instead of O sites for lower Sb concentrations (~0.1 at.%), which can lead to a high electron concentration of above 1019 cm-3 along with a high electron mobility of 110 cm2/V-s at room temperature. The reduction in electron concentration and mobility for higher Sb concentrations (~1 at.%) was caused by the deterioration of the crystalline quality. ZnO co-doped with N and Te was also studied and the advantages of the co-doping technique and problems in achieving p-type conductivity are discussed.
34

New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

Bukhari, Syed Munawer 09 September 2011 (has links)
This work involved the development of new perovskite oxides based on SmFeO3 and testing their performances as sensors for reducing gases (H2, CO & CH4) and as anode materials for dry methane oxidation in solid oxide fuel cells. The new perovskite oxide materials with formula Sm0.95Ce0.05Fe1-xMxO3-δ (M= Co, Ni & Cr) were synthesized by a sol gel method using citric acid as a complexing agent. The resulting materials were characterized by using a battery of techniques including XRD, XRF, XPS, SEM and electrochemical methods. Sensing experiments revealed that both cobalt doped and Cr doped materials can detect H2, CO and CH4 in air at different temperatures including room temperature. The Ni doped materials did not prove good candidates as sensors. However, their reduction treatment studies showed the formation of metallic nanoparticles on the surface which deeply influence their electrical conductivity as well as sensing ability. Consequently, this modification in surface structure and chemical composition enabled them to sense hydrogen gas at 300oC very effectively. The response of sensors based on these reduced materials was measurable and reversible. Some materials were also selected on the basis of their reduction stability and electrical properties, and their electrochemical performances were evaluated as SOFC anodes under dry methane and dry hydrogen fuels separately. The performance tests as SOFC anode revealed that the best anode material for the oxidation of dry hydrogen fuel is Sm0.95Ce0.05FeO3-δ. Furthermore, Sm0.95Ce0.05FeO3-δ proved to be coke resistant anode under dry methane fuel and exhibited reasonably low charge transfer resistance values at temperatures between 600-700oC. The doping of Co and Ni at the B-site of Sm0.95Ce0.05FeO3-δ found to be very effective in further improving its performance as SOFC anode towards oxidation of dry methane fuel at the lower temperatures.
35

New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

Bukhari, Syed Munawer 09 September 2011 (has links)
This work involved the development of new perovskite oxides based on SmFeO3 and testing their performances as sensors for reducing gases (H2, CO & CH4) and as anode materials for dry methane oxidation in solid oxide fuel cells. The new perovskite oxide materials with formula Sm0.95Ce0.05Fe1-xMxO3-δ (M= Co, Ni & Cr) were synthesized by a sol gel method using citric acid as a complexing agent. The resulting materials were characterized by using a battery of techniques including XRD, XRF, XPS, SEM and electrochemical methods. Sensing experiments revealed that both cobalt doped and Cr doped materials can detect H2, CO and CH4 in air at different temperatures including room temperature. The Ni doped materials did not prove good candidates as sensors. However, their reduction treatment studies showed the formation of metallic nanoparticles on the surface which deeply influence their electrical conductivity as well as sensing ability. Consequently, this modification in surface structure and chemical composition enabled them to sense hydrogen gas at 300oC very effectively. The response of sensors based on these reduced materials was measurable and reversible. Some materials were also selected on the basis of their reduction stability and electrical properties, and their electrochemical performances were evaluated as SOFC anodes under dry methane and dry hydrogen fuels separately. The performance tests as SOFC anode revealed that the best anode material for the oxidation of dry hydrogen fuel is Sm0.95Ce0.05FeO3-δ. Furthermore, Sm0.95Ce0.05FeO3-δ proved to be coke resistant anode under dry methane fuel and exhibited reasonably low charge transfer resistance values at temperatures between 600-700oC. The doping of Co and Ni at the B-site of Sm0.95Ce0.05FeO3-δ found to be very effective in further improving its performance as SOFC anode towards oxidation of dry methane fuel at the lower temperatures.
36

N-type Modulation-Doped InGaAlAs/InP Strain-Balanced Multiple Quantum Wells for Photonic Integrated Circuits

Feng, Jui-yang 04 August 2008 (has links)
In this work, we have reported the design, MBE-growth and fabrication of strain-balanced n-type modulation-doped (MD) InGaAlAs/InGaAs multiple quantum wells laser/SOAs on InP. The quantum well contains a lattice-matched InGaAs core, a compressive-strained InGaAs padding, and a tensile-strained InGaAlAs spacer. Two kinds of samples having similar structure but different fundamental transition wavelength of 1.55 £gm and 1.48 £gm are separately prepared for investigating their characteristics in optical amplification under forward bias and electro-absorption under reversed bias. Also, the technique of growing high-quality InGaAlAs with solid-source molecular beam epitaxy has been established and the resulting InGaAlAs bulk and QWs samples are extensively characterized by double-crystal X-ray diffraction, transmission electron microscopy, electroluminescence, and photoluminescence measurements. For £f = 1.55 £gm samples, ridge-waveguide lasers of Fabry-Perot (FP) type and tilted-end-facet (TEF) type were fabricated by a new developed multi-step wet-etching process. When injection current density > 20A/cm^2, electroluminescence spectra show higher optical gain for the quantum well e1-hh2 transition at £f = 1460 nm than the e1-hh1 transition at £f = 1550 nm. The FP laser shows a lasing peak of £f = 1514 nm at threshold. Additional lasing wavelength at £f =1528 nm and 1545 nm were observed sequentially as the injection current increased. However, for the TEF laser, only the emission at £f = 1511 nm was observed. These TE-polarized lasing wavelengths are consistent with the £_-like absorption peaks in photocurrent spectra. The lasing performance is possible attributed to optical transitions within quantum dots/wires which are formed by the strain-field profile and alloy segregation/migration. For £f = 1.48 £gm samples, the differential absorption spectroscopy, which measures the change of transmission (£GT/T) in the presence of electric field, is used to study the electro-absorption modulation behavior of MD-SOA¡¦s. A sample with n-type modulation-doping amounting to a sheet density of 3.5 ¡Ñ 10^11 cm^-2 per QW and combining with a hole-stopping barrier represents the largest chirp parameter (£Gn/£Gk) under reversed bias, which offers an excellent platform to realize electro-refractive devices with larger refractive index changes (£Gn) but lower differential absorption (£G£\) near £f = 1.55 £gm, which is also our interested region of operation. In addition, we have succeeded in reducing the length of conventional constant-width multimode interference (MMI) coupler of K = 0.15 and 0.28 more than 32% by a novel stepped-width design concept. By extending the stepped-with idea, we show that it is possible to obtain 2x2 waveguide couplers with new power splitting ratios of 7%, 64%, 80% and 93% for cross coupling by cascading two short MMI sections. We further realize freely chosen power splitting ratio by interconnecting a pair of unequal-width waveguides as the phase-tuning section into the middle of two short MMI sections. These compact and low loss MMI-based devices use only rectangular geometry without any bent, curved, and tapered waveguides. They offer valuable new possibilities for designing waveguide-based photonic integrated circuits.
37

Alkynylated acenothiadiazoles and N-heteroacenes: synthesis, functionalization, and study of the optical properties for optoelectronic and sensory materials

Brombosz, Scott M. 15 June 2010 (has links)
For organic electronic device applications materials are needed which display good charge carrier mobility, good processability, and stability towards oxygen and moisture. Alkynylated N-Heteroacenes fulfill many of these requirements. Substitution with alkyne groups as well as the introduction of the pyrazine subunit both inhibits oxidative degradation at sensitive position in the molecules. Additionally the trialkylsilylethynyl group aides in directing the packing motif as well as vastly increases the solubility over unsubstituted analogues. A requisite precursor in the synthesis of alkynylated N-heteroacenes is alkynylated acenothiadiazoles. These thiadiazoles display interesting photophysical properties and can be functionalized to produce a wide range of properties in closely related materials. The acenothiadiazoles themselves have potential applications as an N-type semiconductor. Optical gaps and calculated HOMO-LUMO gaps show that these molecules, when compared to known N-type materials, should be easily injected with electrons. Additionally the crystal packing of these compounds shows favorable π-orbital overlap which should provide excellent charge carrier mobilities.
38

New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

Bukhari, Syed Munawer 09 September 2011 (has links)
This work involved the development of new perovskite oxides based on SmFeO3 and testing their performances as sensors for reducing gases (H2, CO & CH4) and as anode materials for dry methane oxidation in solid oxide fuel cells. The new perovskite oxide materials with formula Sm0.95Ce0.05Fe1-xMxO3-δ (M= Co, Ni & Cr) were synthesized by a sol gel method using citric acid as a complexing agent. The resulting materials were characterized by using a battery of techniques including XRD, XRF, XPS, SEM and electrochemical methods. Sensing experiments revealed that both cobalt doped and Cr doped materials can detect H2, CO and CH4 in air at different temperatures including room temperature. The Ni doped materials did not prove good candidates as sensors. However, their reduction treatment studies showed the formation of metallic nanoparticles on the surface which deeply influence their electrical conductivity as well as sensing ability. Consequently, this modification in surface structure and chemical composition enabled them to sense hydrogen gas at 300oC very effectively. The response of sensors based on these reduced materials was measurable and reversible. Some materials were also selected on the basis of their reduction stability and electrical properties, and their electrochemical performances were evaluated as SOFC anodes under dry methane and dry hydrogen fuels separately. The performance tests as SOFC anode revealed that the best anode material for the oxidation of dry hydrogen fuel is Sm0.95Ce0.05FeO3-δ. Furthermore, Sm0.95Ce0.05FeO3-δ proved to be coke resistant anode under dry methane fuel and exhibited reasonably low charge transfer resistance values at temperatures between 600-700oC. The doping of Co and Ni at the B-site of Sm0.95Ce0.05FeO3-δ found to be very effective in further improving its performance as SOFC anode towards oxidation of dry methane fuel at the lower temperatures.
39

Mid-wave infrared HgCdTe photodiode technology based on plasma induced p-to-n type conversion

White, John Kenton January 2005 (has links)
[Truncated abstract] Infrared photodiodes fabricated in HgCdTe achieve near-ideal performance, however, in comparison with other semiconductors, processing techniques for HgCdTe are expensive and have relatively low yields. Reactive-ion-etching (RIE) in a H2⁄CH4 gas mixture, a process primarily used for material removal, will cause p-to-n type conversion in HgCdTe. It has been shown, by several groups, that infrared photodiodes fabricated with a process technology based on RIE p-to-n type-conversion achieve high yields with state-of-the-art performance. For this technology to be accepted RIE formed n-on-p photodiodes must demonstrate junction stability under normal operating conditions. Along with a stable junction, a compatible passivation technology that is able to withstand processing and operation temperatures is required. This thesis investigates the RIE p-to-n type-conversion mechanism in HgCdTe with the aim of demonstrating bake stable RIE formed junctions, and gaining an insight to the processes by which RIE type-conversion occurs. In pursuing these aims, two complimentary objectives were required, namely, the development of a passivation technology compatible with RIE formed junctions, and the development of a detailed I-V/Rd-V model for HgCdTe photodiodes. As a result of these objectives, this thesis presents a double-layer ZnS on CdTe passivation technology with which stable RIE-formed n-on-p junctions in HgCdTe are demonstrated. Using this process technology, mid-wave infrared (MWIR) HgCdTe photodiodes have been fabricated and subjected to a bake in vacuum at 80°C for 175 hours, after which there is negligible degradation in the zero-bias Dynamic-Resistance Area product (RoA) from the pre-bake values
40

Feasibility of Nuclear Plasma Interaction studies with the Activation Technique

Nogwanya , Thembalethu January 2018 (has links)
Magister Scientiae - MSc (Physics) / Electron-mediated nuclear plasma interactions (NPIs), such as Nuclear Excitation by Electron Capture (NEEC) or Transition (NEET), can have a signi cant impact on nuclear cross sections in High Energy Density Plasmas (HEDPs). HEDP environments are found in nuclear weapons tests, National Ignition Facility (NIF) shots and in the cosmos where nucleosynthesis takes place. This thesis explores the impact of NPIs on highly excited nuclei. This impact is understood to be more intense in highly-excited nuclei states in the quasi-contiuum which is populated by nuclear reactions prior to their decay by spontaneous -ray emission.

Page generated in 0.0389 seconds