• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 92
  • 24
  • 22
  • 9
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 368
  • 84
  • 45
  • 43
  • 38
  • 35
  • 34
  • 33
  • 31
  • 26
  • 26
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Recognition of Neutrophil Extracellular Traps by the Cytosolic DNA Sensor cGAS

Apel, Falko 11 February 2019 (has links)
Neutrophile Granulozyten produzieren „Neutrophil Extracellular Traps“ (NETs), ein mit antimikrobiellen Molekülen bestücktes Netzwerk aus Chromatinfasern, das während eines Zelltodprogramms namens „NETosis“ von den sterbenden Neutrophilen ausgestoßen wird. Ihre netzartige Struktur erlaubt es ihnen, eine weitere Verbreitung des Infektionserregers zu verhindern; zudem erzeugen sie eine hohe lokale Konzentration an toxischen Molekülen, die Mikroorganismen töten können. Unter normalen Bedingungen werden NETs von Nukleasen zerkleinert und anschließend von Makrophagen entfernt. Wenn dieser Aufräummechanismus gestört ist, aktivieren NETs das Immunsystem und führen zur Produktion von Autoantikörpern oder entzündungsfördernden Zytokinen. NETs werden mit einer wachsenden Liste von inflammatorischen und Autoimmunerkrankungen in Verbindung gebracht. Wie genau dabei NETs durch das Immunsystem erkannt werden, ist noch nicht bekannt. In der vorliegenden Arbeit zeige ich, dass NETs durch den zytosolischen DNA Sensor „cyclic GMP-AMP synthase“ (cGAS) detektiert werden können und dass dadurch die Expression von Typ I Interferonen (TIIFN) induziert wird. Zu Beginn demonstriere ich, dass NETs durch rekombinantes cGAS erkannt werden und dass mit isolierten NETs stimulierte Immunzellen cGAS-abhängig TIIFN produzieren. Des Weiteren zeige ich, dass Neutrophile, die NETosis begehen, in Nachbarzellen ebenfalls cGAS-anhängig TIIFN induzieren können. Abschließend konnte ich diese Ergebnisse in einem in vivo Mausmodel für systemische NET-Produktion bestätigen. Die vorliegende Arbeit zeigt einen Mechanismus, wie NETs durch das Immunsystem erkannt werden und dadurch sowohl zur Entstehung als auch zur Progression von Krankheiten beitragen kann. Sie ermöglicht dementsprechend die Entwicklung neuer Interventionsstrategien, welche zur Heilung oder Linderung einer Vielzahl von Erkrankungen beitragen können. / The first line of cellular defense of the immune system are neutrophils. They are the most abundant white blood cell, which exert an array of antimicrobial effector functions. Neutrophils release neutrophil extracellular traps (NETs), a composite of chromatin and antimicrobial molecules, into the extracellular space during a form of regulated cell death called NETosis. Their net-like structure prevent further dissemination of the invader and establishes a high local concentration of toxic molecules that mediate pathogen killing. NETs provide a platform for undesired immune activation and contribute to the production of autoantibodies and pro-inflammatory cytokines. NETs are implicated in a growing list of inflammatory and autoimmune diseases, but the exact mechanism how NETs are recognized by the immune system is not fully understood. In this study, I demonstrate that the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) senses NETs and induces the production of type I interferons (TIIFN). I first showed that NETs are recognized by recombinant cGAS and that cells treated with isolated NETs produce TIIFN in a cGAS dependent mechanism. Secondly, I demonstrate that neutrophils undergoing NETosis are taken up by neighboring immune cells and induce cGAS-dependent TIIFN expression. Lastly, I confirmed our in vitro results in a mouse model of systemic NET induction. Wildtype mice injected with Concanavalin A significantly upregulate the expression of interferon stimulated genes, while cGAS-/- mice and Cybb-/- mice, which are incapable of producing NETs, fail to induce this response.
142

Thrombosis and Inflammation: A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C

Kohli, Shrey, Shahzad, Khurrum, Jouppila, Annukka, Holthöfer, Harry, Isermann, Berend, Lassila, Riitta 08 June 2023 (has links)
Hemostasis, thrombosis, and inflammation are tightly interconnected processes which may give rise to thrombo-inflammation, involved in infectious and non-infectious acute and chronic diseases, including cardiovascular diseases (CVD). Traditionally, due to its hemostatic role, blood coagulation is isolated from the inflammation, and its critical contribution in the progressing CVD is underrated, until the full occlusion of a critical vessel occurs. Underlying vascular injury exposes extracellular matrix to deposit platelets and inflammatory cells. Platelets being key effector cells, bridge all the three key processes (hemostasis, thrombosis, and inflammation) associated with thrombo-inflammation. Under physiological conditions, platelets remain in an inert state despite the proximity to the endothelium and other cells which are decorated with glycosaminoglycan (GAG)-rich glycocalyx (GAGs). A pathological insult to the endothelium results in an imbalanced blood coagulation system hallmarked by increased thrombin generation due to losses of anticoagulant and cytoprotective mechanisms, i.e., the endothelial GAGs enhancing antithrombin, tissue factor pathwayinhibitor (TFPI) and thrombomodulin-protein C system. Moreover, the loss of GAGs promotes the release of mediators, such as von Willebrand factor (VWF), platelet factor 4 (PF4), and P-selectin, both locally on vascular surfaces and to circulation, further enhancing the adhesion of platelets to the affected sites. Platelet-neutrophil interaction and formation of neutrophil extracellular traps foster thrombo-inflammatory mechanisms exacerbating the cardiovascular disease course. Therefore, therapies which not only target the clotting mechanisms but simultaneously or independently convey potent cytoprotective effects hemming the inflammatory mechanisms are expected to provide clinical benefits. In this regard, we review the cytoprotective protease activated protein C (aPC) and its strong anti-inflammatory effects thereby preventing the ensuing thrombotic complications in CVD. Furthermore, restoring GAGlike vasculo-protection, such as providing heparin-proteoglycan mimetics to improve regulation of platelet and coagulation activity and to suppress of endothelial perturbance and leukocyte-derived pro-inflammatory cytokines, may provide a path to alleviate thrombo-inflammatory disorders in the future. The vascular tissue-modeled heparin proteoglycan mimic, antiplatelet and anticoagulant compound (APAC), dual antiplatelet and anticoagulant, is an injury-targeting and locally acting arterial antithrombotic which downplays collagen- and thrombin-induced and complement-induced activation and protects from organ injury.
143

Neutrophil products inhibit LLO secretion and activity, and <i>Listeria monocytogenes </i> intracellular growth

Arnett, Eusondia A. 25 September 2013 (has links)
No description available.
144

Modulation of dendritic cells by human neutrophil elastase and its inhibitors in pulmonary inflammation

Roghanian, Ali January 2007 (has links)
Dendritic cells (DC) are sentinels of the immune system that display an extraordinary capacity to present antigen to naïve T cells and initiate immune responses. DCs are distributed throughout the lungs in the conducting airways of the tracheobronchial tree and in the parenchymal lung, and play a pivotal role in controlling the immune response to inhaled antigens. The respiratory surface is continually exposed to potentially injurious particulates and pathogenic organisms, to which tightly regulated innate and adaptive immunological responses are made. The airways are usually sterile in healthy individuals. However, patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) have increased susceptibility to microbial infections and increased neutrophil elastase (NE) in lung secretions. This thesis was designed to test the hypotheses that; (i) excess NE may result in a dysregulation of lung DCs function in pulmonary chronic diseases, and (ii) the natural NE inhibitors in the respiratory system are able to rescue the NE-mediated dysregulation of DCs and potentially enhance their antigen presenting activity. The data in this thesis demonstrate that purified human NE down-regulated murine bone marrow (BM)-derived DC co-stimulatory molecules (CSM; CD40, CD80 and CD86), which was due to its proteolytic activity. NE-treated LPS-matured DCs were less efficient at presenting ovalbumin (OVA) peptide to naïve OVAspecific transgenic (D011.10) T cells. In addition, immature DCs (iDC) simultaneously treated with LPS and NE failed to mature fully and produced significantly less IL-12 and TNF-α than DCs matured in the presence of LPS alone. Similarly, treatment of mature DC (mDC) with pooled and individual COPD and CF sputum samples caused a reduction in CD80 and CD86 levels (but not CD40) which positively correlated with the NE concentration present in the samples. The demonstration that NE could adversely affect DC phenotype and function suggested that augmentation of NE inhibitors could reverse this process and preserve DC function in inflammatory microenvironments. Over-expression of an NE specific inhibitor (elafin) in the lungs of mice (using either replication-deficient adenovirus [Ad] or elafin transgenic [eTg] mice) increased the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung DCs in in vivo models. Replication-deficient Ad vectors encoding NE inhibitors, namely elafin, secretory leukocyte protease inhibitor (SLPI) and α1-protease inhibitor (α1-PI), were also used to infect DCs in vitro, to further study the effect of these NE-inhibitors on DCs in isolation. These findings suggest that purified NE and NE-containing lung inflammatory secretions are powerful down-regulators of DC maturation, resulting in reduced capacity of these potent APCs to efficiently present antigens; whereas, NE inhibitors could boost immunity by increasing the activation state and/or number of DCs.
145

Synthesis and in vitro applications of fluorescent imaging agents

Brunet, Aurelie Claude Laure January 2014 (has links)
Fluorescent imaging technologies that offer new ways to visualise and quantify fluorescently labelled molecules are increasing, necessitating the development of fluorescent molecules that can efficiently and specifically label targets in vitro and in vivo. The first aim of this thesis was the study of human neutrophil elastase. Human neutrophil elastase is an important enzyme in the regulation of inflammation but if over expressed can become part of the cause of inflammation itself. To elucidate this dual function and have a greater understanding of this enzyme, an imaging probe for neutrophil elastase was designed. Firstly, the syntheses of fluorescently labelled three branched dendron core structures were optimised, and studied in neutrophils. The selected core structure was functionalised with an elastase specific peptide sequence and fluorescently labelled. The probe was specifically cleaved by neutrophil elastase in an enzymatic assay and in the presence of activated neutrophils (Chapter 1). Fluorescein and rhodamine are dyes that are readily available, are affordable and have convenient wavelengths for microscopy and flow cytometry. Carboxyfluorescein diacetate N-succinimidyl ester (CFDA-SE) is a commonly used fluorescein derivative, widely used in cell proliferation assay. It is mainly used as a mixture of isomers and its synthesis is not reported. Herein a short and simple synthesis of the two individual isomers of carboxyfluorescein diacetate N-succinimidyl ester as well as the equivalent rhodamine variation (carboxytetraethylrhodamine N-succinimidyl ester) is reported (Chapter 2). The labelling properties of these probes were studied in proliferation assays on mouse and human T lymphocytes. Finally, the nuclear penetration of the dendron structure combined with nuclear localisation sequences (NLS) was investigated. Attachment of nuclear localisation sequences to the probe in the presence of fluorescein demonstrated successful entry into the nucleus in human alveolar adenocarcinoma cell line (A549) (Chapter 3).
146

THE INFLUENCE OF MEMBRANE CHOLESTEROL-RELATED SHEAR STRESS MECHANOSENSITIVITY ON NEUTROPHIL FLOW BEHAVIOR

Zhang, Xiaoyan 01 January 2012 (has links)
Hypercholesterolemia is a dominant risk factor for a variety of cardiovascular diseases and involves a chronic inflammatory component in which neutrophil activity plays a critical role. Recently, fluid shear stress mechanotransduction has been established as a control mechanism that regulates the activity of neutrophils by reducing the formation of pseudopods and the surface expression of CD18 integrins, thereby rendering these cells rounded, deformable, and non-adhesive. This is critical for maintaining a healthy circulation, because chronically activated neutrophils not only release excess cytotoxic and degradative agents but also exhibit a reduced efficiency to pass through the small vessels of the microcirculation leading to increased microvascular resistance. We hypothesized that aberrant neutrophil mechanosensitivity to fluid shear stress due to the altered blood environment (i.e., excess plasma cholesterol) is a contributing factor for elevated hemodynamic resistance in the microcirculation associated with hypercholesterolemia. For this purpose, the present work firstly showed that the sensitivity of neutrophils to fluid shear stress depends on the cholesterol-dependent fluidity of the cell membrane, and that, in the face of hypercholesterolemia, the neutrophil mechanosensitivity highly correlated with the plasma levels of free cholesterol. The second part of this project demonstrated that, when subjected to shear stress fields, leukocyte suspensions exhibited transient (within 10 min of flow onset) time-dependent reductions in their apparent viscosity. Moreover, shear-induced changes in viscosity of cell suspensions were influenced by disturbances of membrane cholesterol and fluidity in a fashion similar to that for shear-induced pseudopod retraction. Finally, the third part of this work provided evidence that neutrophils played a role in hypercholesterolemia-related impairment of flow recovery response to transient ischemia. In conclusion, results of the current work provided the first evidence that cholesterol is an important component of the neutrophil mechanotransducing capacity and impaired neutrophil shear mechanotransduction may disturb the blood flow rheology, leading to elevations in the apparent viscosity as well as in the resistance. This cholesterol-linked perturbation may be a contributing factor for the pathologic microcirculation associated with hypercholesterolemia.
147

Antioxidant supplementation and immunoendocrine responses to prolonged exercise

Davison, Glen January 2006 (has links)
The depression of immune cell function that is typically observed after prolonged exercise is thought to be largely mediated by increased plasma concentrations of stress hormones and cytokines and possibly oxidative stress. The aims of this thesis were to determine the effects of acute and longer term oral antioxidant supplementation on immunoendocrine responses following prolonged exercise. In study 1 (Chapter 3) it was shown that vitamin C ingested acutely before and during prolonged exercise has little or no effect on immunoendocrine responses. Furthermore, the combined ingestion of vitamin C with carbohydrate provides no additional effects compared with carbohydrate alone. However, when vitamin C was supplemented acutely, 2 h prior to, and during prolonged exercise in addition to on the night before (14 h prior) exercise this limited the fall in neutrophil oxidative burst activity (study 2, Chapter 4). This was probably a result of reduced direct oxidative damage to neutrophils with vitamin C supplementation since there were no effects on the cortisol, interleukin-6, leukocytosis or neutrophilia responses. Longer periods of antioxidant supplementation (2 - 4 weeks) may be effective at blunting the cortisol, leukocytosis and neutrophilia responses to prolonged exercise (Chapters 5 and 6) but this had no effect on in vitro measures of neutrophil function. In study 5 (Chapter 7) it was shown that acute pre-exercise dark chocolate (which contains polyphenols) ingestion has some effects on plasma oxidative stress markers and circulating insulin and glucose responses but not the immunoendocrine responses to prolonged exercise.
148

The Expression of Neutrophil Products, Myeloperoxidase and Matrix Metalloproteinase 8, in Systemic Vasculature of Obese and Preeclamptic Women

Shukla, Juhi 01 January 2007 (has links)
Evidence shows the activation of neutrophils in the systemic vasculature of obese and preeclamptic women. In this study, I evaluated whether expression of neutrophil products, myeloperoxidase (MPO) and matrix metalloproteinase 8 (MMPS), was associated with neutrophil infiltration in systemic vascular tissue of obese and preeclamptic women. I tested my hypotheses by using immunohistochemical studies to look at the expression of MPO and MMP8 in the vasculature of obese and preeclamptic women. There was a significantly greater expression of MPO and MMP8 in the vasculature of preeclamptic women as compared to normal pregnant and normalnonpregnant women. The vasculature of obese women also had a significantly greater expression of MPO and MMP8 as compared to overweight and normal weight patients.These studies are the first to report that activated neutrophils in systemic vasculature are releasing MPO and MMP8. These findings also indicate that the vascular phenotype of obese and preeclamptic women is similar in that they both show an increased presence of MPO and MMP8 in the systemic vasculature as a result of neutrophil infiltration. This suggests that obese women are at increased risk for preeclampsia because their vasculature is already exposed to increased levels of MPO and MMP8, so when they become pregnant and experience further oxidative stress imposed by the placenta along with an increase in neutrophil number, they develop the clinical symptoms of preeclampsia.
149

Obesity as a Risk Factor for Preeclampsia: Role of Inflammation and the Innate Immune System

Shah, Tanvi Jayendra 01 January 2007 (has links)
Obesity is a known risk factor for preeclampsia, but the reason for this risk is unknown. We sought to demonstrate how obese individuals are predisposed to preeclampsia by mechanisms involving inflammation and the innate immune system. First, we used immunohistochemical studies to identify neutrophil infiltration, NF-κB activation and COX-2 expression in vascular tissue of obese women. We then demonstrated similar neutrophil infiltration and vascular inflammation in preeclamptic women.We used in vitro experiments to test if neutrophils and their products, reactive oxygen species (ROS) and tumor necrosis factor-alpha (TNFα) can activate NF-κB and cause expression of its inflammatory products, COX-2, thromboxane (TX) and IL-8. Co-culture of neutrophils or treatments of ROS or TNFα caused activation of NF-κB and expression of COX-2, TX and IL-8 in vascular smooth muscle cells.This investigation is the first to demonstrate activation of NF-κB and expression of COX-2 coincident with neutrophil infiltration in systemic vascular tissue of obese and preeclamptic women. These data implicate neutrophils as a cause of vascular inflammation. They also suggest that if an obese woman's vasculature was in an inflamed state she is at increased risk for preeclampsia when exposed to the additional burden of oxidative stress and neutrophil activation imposed by the placenta, causing her to develop vascular dysfunction and clinical symptoms of PE (hypertension and edema).
150

Efeitos do ácido clorogênico sobre funções de neutrófilos: estudos in vitro / Effects of chlorogenic acid on neutrophils functions: in vitro studies

Belinati, Karen Daher 07 October 2010 (has links)
Ácido clorogênico (ACG) é o termo utilizado para designar um grupo de compostos fenólicos oriundos da reação de esterificação entre ácidos hidroxicinâmicos (p-cumárico, caféico e ferúlico) e ácido quínico. São amplamente encontrados em produtos naturais e exercem ações antioxidantes, citotóxicas, antitumorais, antibacterianas, antifúngicas e antiinflamatórias. Apesar da descrição dos seus efeitos antiinflamatórios em diferentes modelos experimentais, a literatura é carente quanto suas ações específicas em funções inflamatórias de neutrófilos. Assim, o objetivo do presente trabalho foi investigar os efeitos do ACG sobre funções de neutrófilos in vitro. Neutrófilos foram obtidos do lavado peritoneal de ratos Wistar, machos, 4 horas após a injeção local de glicogênio de ostra a 1% e foram incubados, na presença ou ausência de LPS, com ACG nas concentrações de 25, 50, 100 ou 1000 &#181;M. A viabilidade celular (exclusão por trypan-blue), a secreção de citocinas e prostaglandina E2 (ensaio imunoenzimático); a produção de óxido nítrico (reação de Griess); a expressão de moléculas de adesão (citometria de fluxo); a aderência e a quimiotaxia foram avaliadas. Os resultados obtidos mostraram que o ACG não afetou as secreções do fator de necrose tumoral-&#945;,de interleucina 1&#946;, do óxido nítrico e de prostaglandina E2 em condições basais ou após estimulação pelo LPS. Diferentemente, a incubação com ACG inibiu a aderência de neutrófilos à cultura primária de célula endotelial de microcirculação de ratos e a quimiotaxia in vitro frente ao peptídeo formilado (N-formilmetionil- leucil-fenilalanina). Estes últimos efeitos podem estar associados à ação do ACG sobre a expressão de moléculas de adesão, já que o ACG elevou a expressão de L-selectina e reduziu as expressões de &#946;2 integrina e da molécula de adesão plaqueta e endotélio. Os dados obtidos não foram dependentes de alterações da viabilidade celular. Em conjunto, os resultados mostram que o ACG possui efeito direto sobre funções de neutrófilos responsáveis pela interação ao endotélio microvascular e pela migração orientada em resposta a estímulo inflamatório. Estes efeitos podem contribuir, pelo menos em parte, para redução da migração de neutrófilos para focos de inflamação na vigência de tratamento com ACG amplamente descrita na literatura. / Chlorogenic acid (CGA) is the term utilized to design a group of phenolic compounds from the sterification reaction between the hydroxycinnamic acids (p-coumaric, caffeic and ferulic acid) and the quinic acid. They are largely found in natural products and exert anti-oxidant, citoxic, anti-tumoral, anti-bactericidal, anti-fungicidal and anti-inflammatory activity. Besides the description of its anti-inflammatory effect in different experimental models, the literature is scarse regarding its specific actions in neutrophil inflammatory functions. Therefore, the aim of this present work was to investigate the CGA effects on neutrophils functions in vitro. Neutrophils were obtained from the peritoneal lavage of male Wistar rats four hours after a local injection of oyster glycogen 1% and were incubated, in the presence or absence of LPS, with CGA in the concentrations of 25, 50, 100 or 1000 &#181;M. The cellular viability (trypan-blue exclusion), the cytokines secretions (enzyme-linked immunosorbend assay), production of nitric oxide (Greiss reaction); adhesion molecules expression (flow citometry), adherence and chemotaxis in vitro were assessed. The results shows that the CGA did not affect the secretion of the tumor necrosis factor-&#945; , of nitric oxide and prostaglandin E2 and only the incubation with 50&#181;M of CGA inhibited the secretion of Interleukin 1&#946; after stimulation with LPS. Differently, the incubation with CGA inhibited the adherence of neutrophils on the primary culture of endothelial cell from the micro-circulation of rats and the chemotaxis in vitro against formylated peptide (fenyl-metyl-leucyl-alanin). This lasts effects might be associated with the action of CGA on the expression of adhesion molecules, hence this compound was capable of elevate the expression of L-selectin and reduce the expression of &#946;2 integrin and PECAM-1. The data here obtained are not dependent of cellular viability alterations. In conjunct, the data here obtained shows that the CGA has direct effect on neutrophils functions responsible of the interaction with the micro vascular endothelium and the oriented migration in response to an inflammatory stimuli. These effects can contribute, at least in part, to the decreased neutrophil migration in the inflammatory focus in the presence of CGA treatment.

Page generated in 7.3279 seconds