• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 92
  • 24
  • 22
  • 9
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 368
  • 84
  • 45
  • 43
  • 38
  • 35
  • 34
  • 33
  • 31
  • 26
  • 26
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Pre-B Cell Colony-enhancing Factor (PBEF) Promotes Neutrophil Inflammatory Function through Enzymatic and Non-enzymatic Mechanisms

Malam, Zeenatsultana 19 January 2012 (has links)
Pre-B Cell Colony-Enhancing Factor (PBEF) is a cytokine-like molecule that functions as a nicotinamide phosphoribosyl transferase (Nampt) in a salvage pathway of NAD biosynthesis. PBEF has well-characterized activity as an extracellular inflammatory mediator and has been proposed to signal through the insulin receptor (IR). As neutrophils are key effectors of the innate immune response to infection and injury, we hypothesized that PBEF promotes pro-inflammatory function in neutrophils and that these pro-inflammatory effects may occur through interactions with the neutrophil IR or through PBEF’s enzymatic Nampt activity. Our studies focused on two important facets of neutrophil inflammatory function: their ability to generate reactive oxygen species (ROS) and undergo constitutive apoptosis. We found that, although PBEF does not activate oxidative burst on its own, it primes for ROS generation through the NADPH oxidase. PBEF promotes membrane translocation of cytosolic NADPH oxidase subunits p40phox and p47phox, but not p67phox, induces p40phox phosphorylation and activates Rac. Priming, translocation and phosphorylation are dependent on activation of p38 and ERK mitogen activated protein kinases. PBEF priming of neutrophils occurs independent of its Nampt capacity or of interactions with IR. We next investigated the effects of PBEF on neutrophil constitutive apoptosis. Our lab previously established that extracellular PBEF delays neutrophil apoptosis. Accordingly, we next investigated the mechanism through which this delay was occurring. PBEF-induced delayed apoptosis was enhanced in the presence of Nampt substrates, and NAD alone could delay apoptosis to an extent comparable to PBEF. Delayed apoptosis was blocked by a Nampt inhibitor and was lacking when a mutated PBEF deficient in Nampt activity was utilized. The cell-surface NAD glycohydrolase, CD38, can convert NAD to cyclic ADP-ribose (cADPR). Blocking CD38 activity with a blocking antibody partially reversed the delay of apoptosis induced by PBEF in conjunction with its substrates, and delayed apoptosis could be achieved by addition of the CD38 product cADPR. Finally, we found that delayed apoptosis induced by PBEF did not involve IR. These results indicate that PBEF can prime for enhanced oxidative burst and delay apoptosis in neutrophils, and that these phenomena occur through distinct mechanisms.
192

Regulation of Innate Immune Cells

Maharjan, Anu 05 September 2012 (has links)
Immune cells such as neutrophils and monocytes enter tissues after tissue damage and clear cell debris to allow repair cells such as fibroblasts to close the wound. Monocytes also differentiate into fibroblast-like cells called fibrocytes to mediate wound healing, similar to fibroblasts. However, in abnormal wound healing such as acute respiratory distress syndrome (ARDS) and fibrosing diseases, the accumulation of immune cells such as neutrophils or fibrocytes become detrimental to health. In ARDS, neutrophils accumulate in the lungs and causes additional damage by producing reactive oxygen species (ROS). In fibrosing diseases, increased fibrocyte differentiation is one of the causes that increase extracellular matrix deposition, which leads to severe scar tissue build up. Since there are no effective treatments for ARDS or fibrosing diseases, understanding the regulation of neutrophil activation or fibrocyte differentiation could be helpful to develop new effective therapies. The Gomer lab has found several factors that either promote or inhibit fibrocyte differentiation. The pro-fibrotic cytokines such as IL-4 and IL-13 potentiate fibrocyte differentiation while the plasma protein serum amyloid P (SAP), crosslinked IgG, and the pro-inflammatory cytokines IFN-γ and IL-12 inhibit fibrocyte differentiation. In this thesis, I have now shown that additional factors such as toll-like receptor 2 (TLR2) agonists and low molecular weight hyaluronic acid (LMWHA) inhibit fibrocyte differentiation, while high molecular weight hyaluronic acid (HMWHA) potentiate fibrocyte differentiation. The accumulation of neutrophils in the lungs is one of the major factors that debilitate the health of a patient in ARDS. Since neutrophils have Fc receptors, I examined the effect of SAP on neutrophil spreading, adherence, activation, and accumulation. SAP inhibits neutrophil spreading induced by cell debris and TNF-α induced adhesion, but SAP is unable to have any effect on classic neutrophil adhesion molecules or the production of hydrogen peroxide. SAP inhibits neutrophil accumulation in the lungs of bleomycin-injured mice. There is an exciting possibility of using SAP as a therapeutic agent to treat ARDS.
193

The characterisation and determinants of quality of life in ANCA associated vasculitis

Basu, Neil January 2012 (has links)
Background: The enhancement of quality of life (QOL) is a principal health care objective. Surprisingly, few studies have investigated this outcome in ANCA associated vasculitis (AAV), a complex chronic disease. Existing studies have, however, identified fatigue as a specific problem amongst this population. Although its aetiology is unknown, there is evidence, from other populations, to support a neural basis for this symptom. Aims: This study aimed to characterise QOL and its determinants amongst patients with AAV. A secondary study examined the association of AAV related fatigue with alterations of the brain. Methods: An AAV case-control study was conducted, incorporating a comparison and within-case analysis, using two groups of population and chronic disease controls. All participants completed a questionnaire comprising measures of QOL and putative determinants of QOL impairment. Concurrently, putative clinical determinants were collected from cases. The secondary study recruited AAV cases based on fatigue status. A further group with idiopathic fatigue was recruited from the general population. All subjects underwent magnetic resonance (MR) brain scanning incorporating structural and physiological imaging. Results: Compared to population controls, cases were substantially more likely to report low QOL and levels were equable to disease controls. Potentially modifiable biological and psycho-social factors were independently associated with poor QOL, of which fatigue was found to be of principal importance. In the secondary study, structural and physiological differences were observed between AAV patients with and without fatigue, as well as fatigued population subjects. Conclusions: AAV patients experienced significant QOL impairment. A bio-psychosocial approach to AAV health care is likely to improve QOL outcomes, although a better understanding of specific mechanisms is necessary to fully manage these problems. MR techniques have suggested a neural basis for AAV related fatigue. In the future they may help delineate the mechanisms of fatigue and consequently improve QOL in AAV.
194

Directing cell migration by dynamic control of laminar streams

Moorjani, Samira Gian 03 February 2011 (has links)
Interactions of cells with their chemical microenvironments are critical to many polarized processes, including differentiation, migration, and pathfinding. To investigate such cellular events, tools are required that can rapidly reshape the microscopic chemical landscapes presented to cultured cells. Existing chemical dosing technologies rely on use of pre-fabricated chemical gradients, thus offering static cell-reagent interactions. Such interactions are particularly limiting for studying migration and chemotaxis, during which cells undergo rapid changes in position, morphology, and intracellular signaling. This dissertation describes the use of laminar streams, containing cellular effector molecules, for precise delivery of effectors to selected subcellular regions. In this approach, cells are grown on an ultra-thin polymer membrane that serves as a barrier to an underlying reagent reservoir. By using a tightly-focused pulsed laser beam, micron-diameter pores can be ablated in the membrane upstream of desired subcellular dosing sites. Emerging through these pores are well-defined reagent streams, which dose the targeted regions. Multiple pores can be ablated to allow parallel delivery of effector molecules to an arbitrary number of targets. Importantly, both the directionality and the composition of the reagent streams can be changed on-the-fly under a second to present dynamically changing chemical signals to cells undergoing migration. These methods are applied to study the chemotactic responses of neutrophil precursor cells. The subcellular localization of the chemical signals emerging through pores is found to influence the morphological evolution of these motile cells as they polarize and migrate in response to rapidly altered effector gradients. / text
195

Associations among neutrophil function, metabolic indicators, and reproductive health in dairy cows

Wittrock, Julie 10 May 2012 (has links)
This thesis is an investigation of the interactions of insulin resistance (IR), metabolic markers, neutrophil function, and reproductive health in peripartum dairy cows, including the evaluation of a hand-held glucometer for diagnosis of IR. The neutrophil functions of interest were oxidative burst and phagocytosis capacity, and reproductive diseases were endometritis and cervicitis. A total of 81 Holstein cows were enrolled 3 wk prior to expected calving date from November 2010 until October 2011, and were followed until 5 wk postpartum. Known markers of IR, neutrophil function, and disease were monitored through this period. The hand-held glucometer was identified as a useful alternative to laboratory measurements of glucose. Markers of IR influenced phagocytosis capacity and reproductive disease. High haptoglobin concentrations were associated with increased risk of reproductive disease and diminished oxidative burst function. Metabolically related inhibition of neutrophil function may be important in development of reproductive disease. / National Sciences and Engineering Research Council of Canada, Ontario Graduate Scholarship Program
196

EFFECTS OF CELLULAR HETEROGENEITY AND IMMUNE CELLS IN ANGIOTENSIN II-INFUSED HEMORRHAGED ASCENDING AORTAS

Jung, Kyung Sik 01 January 2013 (has links)
A previous thoracic aortic aneurysm time course study from our laboratory determined that ascending aortic dilation was significantly increased by day 5, and reached a plateau by day 28 of angiotensin II (AngII) infusion. We also found that mice had hemorrhage localized to the ascending aortas by day 5 of AngII infusion. The purpose of these studies was to provide mechanistic insight into the development of AngII-induced ascending aortic hemorrhage. Male C57BL/6 mice fed normal diet were subcutaneously infused with either AngII (1000 ng/kg/min) or saline for 5 days. To examine cellular heterogeneity, hemorrhaged ascending aortas were collected and sectioned serially for histological staining and immunostaining. I was unable to identify an entry point for blood into the media of the aortic root and ascending aorta. However, I found incomplete intimo-medial dissection near the hemorrhaged regions that may potentially be contiguous with the blood. To investigate infiltration of immune cells during AngII infusion, immunohistochemistry of hemorrhaged ascending aortas was performed. The numbers of macrophages and neutrophils in AngII-infused aortas were increased in both medial and adventitial areas when compared with saline-infused aortas. Therefore, infiltration of immune cells at the point of dissection is associated with aortic hemorrhage during AngII infusion.
197

Characterization of Myometrial Cytokine Expression and Leukocyte Infiltration During Term and Preterm Labour in the Mouse

Nedd-Roderique, Tamara 15 December 2011 (has links)
Studies indicate an association between both term labour (TL) and preterm labour (PTL) and the presence of uterine inflammatory cytokines and leukocyte infiltration. We hypothesized that peripheral leukocytes are recruited to uterine tissues by locally produced cytokines where they contribute to the initiation of TL and PTL. The cytokine expression profile was analyzed using an in vivo mouse model of gestation and two PTL models (Lipopolysaccharide- and RU486-induced). Myometrial neutrophil and macrophage infiltration was also studied. My results demonstrate that macrophage infiltration precedes neutrophil infiltration during late gestation and that both leukocyte subsets increase during PTL and further increase post partum. These changes in leukocyte numbers are associated with significant changes in multiple myometrial cytokines with TL and RU486-induced PTL showing similar cytokine profiles. Importantly, post partum involution, the process by which the uterus completes the reproductive cycle and returns to its pre-pregnant state, appears similar in all three models.
198

Characterization of Myometrial Cytokine Expression and Leukocyte Infiltration During Term and Preterm Labour in the Mouse

Nedd-Roderique, Tamara 15 December 2011 (has links)
Studies indicate an association between both term labour (TL) and preterm labour (PTL) and the presence of uterine inflammatory cytokines and leukocyte infiltration. We hypothesized that peripheral leukocytes are recruited to uterine tissues by locally produced cytokines where they contribute to the initiation of TL and PTL. The cytokine expression profile was analyzed using an in vivo mouse model of gestation and two PTL models (Lipopolysaccharide- and RU486-induced). Myometrial neutrophil and macrophage infiltration was also studied. My results demonstrate that macrophage infiltration precedes neutrophil infiltration during late gestation and that both leukocyte subsets increase during PTL and further increase post partum. These changes in leukocyte numbers are associated with significant changes in multiple myometrial cytokines with TL and RU486-induced PTL showing similar cytokine profiles. Importantly, post partum involution, the process by which the uterus completes the reproductive cycle and returns to its pre-pregnant state, appears similar in all three models.
199

Obesity as a risk factor for preeclampsia : role of inflammation and the innate immune system /

Shah, Tanvi Jayendra, January 2007 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2007. / Prepared for: Dept. of Obstetrics and Gynecology. Bibliography: leaves 166-192. Also available online via the Internet.
200

Etude de la protéolyse extracellulaire par les protéases à sérine du neutrophile au cours de la mucoviscidose : contribution des NETs et perspectives thérapeutiques / Study of the extracellular proteolysis by neutrophil serine proteinases during cystic fibrosis : contribution of NETs and therapeutic strategies

Dubois, Alice 28 March 2013 (has links)
La mucoviscidose est une maladie génétique caractérisée par une obstruction des voies respiratoires, des infections et une inflammation pulmonaire résultant du recrutement massif de neutrophiles qui sécrètent des protéases : l’élastase, la protéase 3 et la cathepsine G. Ces protéases peuvent être sécrétées selon deux voies, la dégranulation ou la sécrétion de NETs (Neutrophil Extracellular Traps), qui sont des fibres de chromatine auxquelles elles sont associées et décrites comme des structures antimicrobiennes. Dans le milieu extracellulaire, la dérégulation du contrôle de l’activité des protéases par leurs inhibiteurs conduit à la dégradation progressive du tissu pulmonaire. Nous avons montré que cette dérégulation était modulée par l’interaction des protéases avec l’ADN présent dans les sécrétions bronchiques des patients et que le ciblage de ces protéases par des inhibiteurs exogènes pouvait être amélioré in vitro par de la DNase ou de la polylysine qui compacte l’ADN. Ce polypeptide est également bactéricide vis-à-vis des pathogènes majeurs de la mucoviscidose, S. aureus et P. aeruginosa. Nos travaux montrent également que les NETs sont sécrétés dans les poumons des patients où ils constituent un réservoir de protéases actives potentiellement délétère et n’ont pas d’effet bactéricide vis-à-vis de S. aureus et P. aeruginosa. Nos travaux montrent que les voies de signalisation conduisant à la sécrétion des NETs varient selon le stimulus, générant des structures aux propriétés différentes. / Cystic fibrosis (CF) is a hereditary disease characterized by the obstruction of the airways, infections and a chronic lung inflammation due to a massive recruitment of neutrophils that secrete proteases: the elastase, the proteinase 3 and the cathepsin G. These proteases can be secreted by two mechanisms, namely degranulation and the secretion of NETs (Neutrophil Extracellular Traps), which are chromatin fibers to which they are bound and that have been described as antimicrobial structures. In the extracellular environment, the dysregulation of these proteases control by their inhibitors leads to progressive lung tissue degradation. We have shown that this dysregulation was influenced by the interaction of the proteases with the DNA found in the lung secretions of CF patients and that targeting these proteases with exogenous inhibitors could be improved in vitro by DNase or polylysine, which compacts DNA. This polypeptide also presents a bactericidal effect towards the major CF-associated pathogens, S. aureus and P. aeruginosa. Our work also shows that NETs are secreted in the lungs of CF patients, where they are a potentially deleterious reservoir of active proteases, and that they do not display any bactericidal effect towards S. aureus and P. aeruginosa. Our work shows that the signalization pathways leading to NETs secretion vary depending on the stimulus, generating structures that present different properties.

Page generated in 0.0461 seconds