31 |
Experimental Investigation of the effects of water saturation on the acoustic admittance of sandy soils.Horoshenkov, Kirill V., Mohamed, Mostafa H.A. January 2006 (has links)
No / A novel technique for the laboratory characterization of the frequency-dependent acoustic surface admittance of partly saturated samples of sands is presented. The technique is based on a standard laboratory de-watering apparatus coupled with a standard acoustic impedance tube. The dependence of the surface admittance on the degree of water saturation is investigated for two samples of sand with widely different flow resistivities. It is shown that a relatively small change (e.g., from 0% to 11% by volume) in the degree of water saturation can result in a much larger change (e.g., twofold) in the acoustic surface admittance. An empirical relationship is found between the peaks observed in the real part of admittance spectra for the low flow resistivity sand and the degree of water saturation. The data are compared with predictions of two widely used ground impedance models: a semiempirical single parameter model and a two parameter model. A modified two-parameter version of a single-parameter model is found to give comparable fit to the two-parameter model. However, neither model provides an accurate fit.
|
32 |
Vibro-Acoustic Modulation as a Baseline-Free Structural Health Monitoring TechniqueVehorn, Keith A. 30 August 2013 (has links)
No description available.
|
33 |
Contribution à la caractérisation des bétons endommagés par des méthodes de l'acoustique non linéaire. Application à la réaction alcalis-siliceKodjo, Apedovi January 2008 (has links)
Cette thèse apporte une nouvelle contribution à la caractérisation non destructive des matériaux en béton endommagés par la réaction alcalis-silice (RAS). À cette fin, des techniques et outils de caractérisation non linéaire ont été mises au point. Un banc de test de résonance non linéaire a été développé. Des améliorations ont été apportées au niveau de la chaine d'excitation et au niveau du traitement du signal afin d'optimiser la sensibilité du banc de test. Les essais non linéaires ont été effectues sur sept échantillons de béton endommagés par la RAS, trois échantillons de béton endommagés thermiquement, deux échantillons de béton endommagés mécaniquement et trois échantillons de béton sains. La non-linéarité comportementale des matériaux étant souvent attribuée au comportement hystérétique des micro-défauts contenus dans ces derniers, il a été montré dans un premier temps, que le béton endommagé par la RAS présente un comportement hystérétique. Cette étude a été faite à partir des essais de l'acousto-élastique. Le banc de test de résonance non linéaire a été ensuite utilisé pour la caractérisation des bétons sains et endommagés par la RAS. II a été montré que la technique non linéaire, en plus de permettre une caractérisation sans avoir l'historique de l'état du matériau, permet également de détecter de façon précoce l'endommagement du matériau réactif. L'influence de la teneur en eau sur les paramètres non linéaires a également été étudiée. II a été montré que les valeurs mesurées sur des échantillons de béton conservés dans des conditions de forte teneur en eau sont plus faibles. Dans l'objectif de trouver une particularité à l'endommagement causé par la RAS, la nature visqueuse du gel produit par la RAS a été utilisée. Une démarche, qui s'inspire des essais de fluage en statique réalisés sur des matériaux, a été utilisée pour répondre à cette question de signature de la RAS, tout en appliquant la technique de résonance non linéaire. Le modèle ressort-amortissement de Maxwell a été utilise pour l'interpretation des résultats. Ainsi, le temps de réponse au fluage a été analysé sur des échantillons endommagés par la RAS. II en ressort que le gel issu de la RAS rallonge le temps de réponse au fluage. Enfin, les limites de la technique de résonance non linéaire pour une application in situ ont été expliquées et une nouvelle technique non linéaire estimée applicable sur site a été initiée. Cette technique consiste à utiliser une source externe telle une masse pour provoquer la non-linéarité dans le matériau, pendant qu'une onde ultrasonore sonde le milieu.||The aim of this thesis is to contribute to the non-destructive characterization of concrete materials damaged by alkali-silica reaction (ASR). For this purpose, some nonlinear characterization techniques have been developed, as well as a nonlinear resonance test device. In order to optimize the sensitivity of the test device, the excitation module and signal processing have been improved. The nonlinear tests were conducted on seven samples of concrete damaged by ASR, three samples of concrete damaged by heat, three concrete samples damaged mechanically and three sound concrete samples. Since, nonlinear behaviour of the material is often attribute to its micro-defects hysteretic behaviour, it was shown at first that concrete damaged by ASR exhibits an hysteresis behaviour. To conduct this study, an acoustoelastic test was set, and then nonlinear resonance test device was used for characterizing sound concrete and concrete damaged by ASR. It was shown that the nonlinear technique can be used for characterizing the material without knowing its initial state, and also for detecting early damage in the reactive material. Studies were also carried out on the effect of moisture regarding the nonlinear parameters; they allowed understanding the low values of nonlinear parameters measured on concrete samples that were kept in high moisture conditions. In order to find a specific characteristic of damage caused by ASR, the viscosity of ASR gel was used. An approach, based on static creep analysis, performed on the material, while applying the nonlinear resonance technique. The spring-damping model of Maxwell was used for the interpretation of the results. Then, the creep time was analysed on samples damaged by ASR. It appears that the ASR gel increases the creep time. Finally, the limitations of the nonlinear resonance technique for in situ application have been explained and a new applicable nonlinear technique was initiated. This technique use an external source such as a mass for making non-linearity behaviour in the material, while an ultrasound wave is investigating the medium.
|
34 |
Acoustic characterization of orifices and perforated liners with flow and high-level acoustic excitationZhou, Lin January 2015 (has links)
This thesis is motivated by the need for noise control in aircraft engine with orifices and perforated liner. The presence of high-level acoustic excitation, different flow situations either bias flow, grazing flow or any combination in the aircraft engine, makes the acoustic behavior complex due to the interaction between sound and flow over the lined wall. Both systematic acoustic prediction of aircraft engines and liner optimization necessitate progress in impedance measurement methods by including the effect of the complex flow situations. The aim of the present thesis is to experimentally study the change in acoustic properties of orifices and perforated liners under bias or grazing flow. In order to study the effect of different combinations of bias flow and high-level acoustic excitation, an in-duct orifice has been investigated with finely controlled acoustic excitation levels and bias flow speeds. This provides a detailed study of the transition from cases when high-level acoustic excitation causes flow reversal in the orifice to cases when the bias flow maintains the flow direction. Nonlinear impedance is measured and compared, and a scattering matrix and its eigenvalues are investigated to study the potentiality of acoustic energy dissipation or production. A harmonic method is proposed for modelling the impedance, especially the resistance, which captures the change in impedance results at low frequencies compared with experimental results. The presence of grazing flow can increase the resistance of acoustic liners and shift their resonator frequency. So-called impedance eduction technology has been widely studied during the past decades, but with a limited confidence due to the interaction of grazing flow and acoustic waves. A comparison has been performed with different test rigs and methods from the German Aerospace Center (DLR). Numerical work has been performed to investigate the effect of shear flow and viscosity. Our study indicates that the impedance eduction process should be consistent with that of the code of wave propagation computation, for example with the same assumption regarding shear flow and viscosity. A systematic analysis for measurement uncertainties is proposed in order to understand the essentials for data quality assessment and model validation. The idea of using different Mach numbers for wave dispersion and in the Ingard-Myers boundary condition has been tested regarding their effect on impedance eduction. In conclusion, a local Mach number based on friction velocity is introduced and validated using both our own experimental results and those of previous studies. / <p>QC 20150522</p>
|
35 |
Optical generation of tone-burst Rayleigh surface waves for nonlinear ultrasonic measurementsSwacek, Christian Bernhard 27 August 2012 (has links)
Conventional contact ultrasonic methods suffer from large variability, which
is known to originate from a number of sources such as coupling variability, and the
surface roughness at the transducer/specimen interface. The inherently small higherharmonic
signals can be significantly influenced by the changes in contact conditions,
especially in nonlinear ultrasonic measurements. For this reason, the noncontact
generation and detection techniques are very attractive. This research first focuses
on the optical generation of tone-burst surface acoustic waves in a metallic specimen.
Two methods that use laser light as an optical source are compared for generating
surface acoustics waves in the 5 MHz range. Both the shadow mask and diffraction
grating are used to convert a laser pulse to a tone-burst signal pattern on the specimen.
The generated signals are detected by a wedge transducer at a fixed location and then
the harmonic contents in the generated signals and the repeatability of the methods
are evaluated. Finally, the developed method is used to characterize the material
nonlinearity of aluminum (Al 6061) and steel (A36). The results showed repeatable
measurements for ablative signal excitation on aluminum.
|
36 |
Ultra-accelerated assessment of alkali-reactivity of aggregates by nonlinear acoustic techniquesChen, Jun 06 July 2010 (has links)
This research develops two novel experimental techniques based on nonlinear acoustics/ultrasound to provide an ultra-accelerated characterization of alkali-reactivity of aggregates. Alkali-silica reaction (ASR) is a deleterious reaction occurring between reactive siliceous minerals present in some aggregates and alkalis mainly contributed by the cement, but also present in some deicing chemicals. With increasing reports of ASR-induced damage in transportation structures, there is a critical need for fast and reliable test methods for the screening of aggregates and aggregate/paste combinations. Currently, the accelerated mortar bar test (AMBT), which measures expansion, is the most commonly used test method. Also used is the concrete prism test (CPT), another expansion-based method, which requires at least one year testing time, limiting the practical utility of this method. In addition, petrographic analysis can be performed to identify potentially reactive minerals in aggregates but requires training and may not be appropriate for assessment of aggregate/paste combinations. Finally, linear acoustic methods such as wave speed and attenuation measurements can be used for the assessment of ASR, but the sensitivity of linear acoustic methods to ASR-induced damage is considered to be relatively low. Therefore, critical limitations exist in the existing test methods.
In light of recent advances in nonlinear acoustics (which are more sensitive to small-scale damage than linear acoustics), the purpose of this research is the development and assessment of an accelerated method for evaluating the potential for alkali reactivity in aggregate and aggregate/paste combinations by combining advanced ultrasonic methods with standard test procedures. In fact, two nonlinear acoustic methods are developed under this research - nonlinear wave modulation spectroscopy (NWMS) and nonlinear impact resonance acoustic spectroscopy (NIRAS) - and are used to characterize the changes in material nonlinearity as a result of the progressive ASR damage during the standard mortar bar and concrete prism testing. Following the AMBT and CPT, nonlinear acoustic techniques are applied to both mortar bars and concrete prism samples. Nonlinearity parameters are defined as the indicator of growing ASR damage, and measurement results clearly show that these nonlinearity parameters are more sensitive to the ASR damage than the linear parameters used in the linear acoustic measurements, particularly at early ages. Different aggregates with varying alkali-reactivity are effectively distinguished with the proposed experimental techniques in a timely manner, particularly for those aggregates with similar levels of reactivity, as determined by AMBT.
The effect of a Class C fly ash addition on nonlinear properties was also investigated using the NIRAS measurements through a comparison of test results between mortar samples blended with fly ash and without fly ash. As complementary supports of the experimental results, petrographic analyses and theoretical modeling are also performed, and these results are well correlated with results from the NWMS and NIRAS techniques.
Through a comparison with results from accompanying expansion measurements and linear acoustic methods, the proposed nonlinear acoustic techniques show their advantages to accelerate the assessment of alkali-reactivity of aggregates. Under AMBT, reactive aggregates were identifiable as early as a few days of testing. With CPT, reactive aggregates were differentiated as early as a few weeks. Overall, the coupling of the developed nonlinear test methods with standard expansion tests suggests that test durations could be potentially reduced by half, especially for AMBT tests.
|
37 |
Analysis of second harmonic generation at a free boundary for oblique incidenceBender, Frank Alexander 30 August 2010 (has links)
This thesis investigates the generation of second harmonic bulk waves in the
presence of a free boundary. Second harmonic waves have proven to be useful in
the field of nondestructive evaluation to detect fatigue in a material at an early
stage. Since most experimental setups include a free surface, the influence of such a
boundary is of significant practical interest. As a result, the objective of this research
is to develop a quantitative understanding of the complete process of second harmonic
generation at a free boundary.
This research shows that the interaction of primary waves (with each other) in
the nonlinear framework leads to the generation of second harmonic bulk waves. We
distinguish between self-interaction of a single primary wave and the cross-interaction
of two different primary waves. The proposed approach uses the perturbation method
to solve the nonlinear equations of motion, and shows two fundamentally different
solutions. In the case of resonance, the secondary waves grow with propagation
distance. This is the most important practical case, since the growing amplitudes of
these waves should be easier to experimentally measure. In the second, non-resonant
case, the amplitudes of the secondary waves are constant.
The complete process of second harmonic generation is analyzed for an incident Pand
an incident SV-wave, with the primary and secondary fields given. Finally, the
degenerate case of normal incidence is presented. Normal and oblique incidence are
compared with regard to their feasibility in experimental setups. The specific behavior
of second harmonic waves propagating in aluminum is numerically determined. These
results enable a variety of physical insights and conclusions to be drawn from the
analytical and numerical investigations.
|
38 |
Nonlinear resonance methods for assessing ASR susceptibility during concrete prism testing (CPT)Lesnicki, Krzysztof Jacek 17 May 2011 (has links)
This research focuses on the characterization of damage accumulation in concrete specimens. Specifically, a nonlinear vibration technique is used to characterize the damage introduced by ongoing alkali-silica reactions (ASR). The nonlinear resonance testing consists of an analysis of the frequency response of concrete specimens subjected to impact loading. ASR introduces a third gel like phase, which can be expansive in the presence of moisture. The result of ASR is the formation of microcracks and debonding between aggregate and cement phases. Collectively, these changes act to increase the specimens' nonlinearity. As a result, it is found that the concrete samples exhibit nonlinear behavior; mainly a decrease in resonance frequency with an increasing level of excitation strain. The relationship between the amplitude of the response and the amount of frequency shift is used as a parameter to describe the nonlinearity of the specimen. The specimens used in this research are of varying reactivity with respect to ASR, which is induced in accordance with ASTM C 1293. The level of nonlinearity is used as a measure of damage caused by the progress of ASR throughout the one year test duration. These nonlinear resonance results are compared to the traditional measures of expansion described in the standard. The robustness and repeatability of the proposed technique is also investigated by repeated testing of samples assumed to be at a specific damage state. Finally, a petrographic staining technique is used to complement nonlinearity measurements and to further gain understanding of ASR. The results of this study show that the proposed nonlinear resonance methods are very sensitive to microstructural changes and have great potential for quantitative damage assessment in concrete.
|
39 |
Nonlinear Wave Propagation in Brass InstrumentsResch, Janelle 04 December 2012 (has links)
The study of wave production and propagation is a common phenomenon seen within a variety of math and physics problems. This thesis in particular will investigate the production and propagation of sound waves through musical instruments. Although this field of work has been examined since the late 1800s, approaching these types of problems can be very difficult. With the exception of the last fifty years, we have only been able to approach such problems by linearizing the necessary equations of gas dynamics. Without the use of a computer, one can only get so far in studying nonlinear acoustic problems. In addition, the numerical theory for nonlinear problems is incomplete. Proving stability is challenging and there are a variety of open problems within this field.
This thesis will be examining the propagation of sound waves specifically through brass instruments. However, we will not be able to fully examine this problem in a master’s thesis because of the complexity. Instead, the objective is to provide a foundation and global picture of this problem by merge the fields of nonlinear acoustics as well as computational and analytical gas dynamics.
To study the general behaviour of nonlinear wave propagation (and to verify previous findings), experiments have been carried on a trumpet. The purpose of these experiments is take measurements of the sound pressure waves at various locations along the instrument in order to understand the evolution of the wave propagation. In particular, we want to establish if the nonlinear distortion is strong enough to have musical consequences; and if there are such outcomes, what prerequisites are required for the observable behaviour. Additionally, by using the discontinuous Galerkin numerical method, a model of the system will be presented in this thesis. It will then be compared with the experimental data to verify how well we were able to describe the nonlinear wave motion within a trumpet.
|
40 |
Propagation d'ondes de choc dans les milieux aléatoires avec des inhomogénéités distribuées dans l'espace ou dans une couche mince / Nonlinear shock waves propagation in random media with inhomogeneities distributed in space or concentrated in a thin layerYuldashev, Petr 10 November 2011 (has links)
Pas de résumé / Propagation of nonlinear acoustic waves in inhomogeneous media is an important problem inmany research domains of modern theoretical and applied acoustics. For example, studies onpropagation of high amplitude N-waves in turbulent atmosphere are relevant to the sonic boomproblem which involves high interest due to development of new civil supersonic aircrafts. Inrelation to sonic boom problem, many studies on spark-generated N-wave propagation through aturbulent layer were carried out in model laboratory-scale experiments which are more controlledand reproducible than field measurements. Propagation of high intensity focused ultrasound intissue (HIFU) is intensively studied for medical applications. HIFU is a basis of new surgicaldevices for noninvasive thermal and mechanical ablation of tumors.In this thesis, the problem of characterization of high amplitude N-waves generated in air byan electric spark was studied using combined acoustical and optical methods. The fine structureof shocks was deduced from the shadowgraphy images with a resolution that cannot be obtainedusing condenser microphones. It was shown that the combination of optical and acoustical methodsallows complete characterization of the N-waves.N-wave propagation through a layer of thermal turbulence was further studied in a laboratoryexperiment. The evolution of statistical distributions and average values of the most importantN-wave parameters was investigated at different propagation distances. Experimental results werecompared to data obtained in another experiment known in literature, where N-wave was propagatedthrough kinematic turbulence. It was shown that in the case of almost the same widths ofthe turbulent layers, values of the characteristic scales and rms of refractive index fluctuations, thekinematic turbulence leads to stronger distortions of the peak pressure and the shock rise time ofthe N-wave and to 2-3 greater probabilities to observe intense focusing in caustics.Effects of nonlinear propagation and random focusing on the statistics of N-wave amplitudewere studied theoretically using the KZK equation and the phase screen model. The phase screenwas characterized by the correlation length and the refraction length – the distance where firstcaustics occur. Probability distributions, mean values and standard deviations of the N-wave peakpressure were obtained from the numerical solutions and were presented as functions of the propagationdistance and the nonlinear length. Statistical results from the KZK model were comparedwith analytical predictions of the nonlinear geometrical acoustics approach (NGA). It was shown,that NGA approach is valid only up to the distance of one third of refraction length of the screen.Strong nonlinear effects were shown to suppress amplitude fluctuations. The effect of the scale ofinhomogeneities on amplitude statistics was also investigated.The problem of focusing of ultrasound beam through inhomogeneous medium is importantfor medical diagnostics and nondestructive testing problems. The inhomogeneities of biologicaltissue or of industrial materials can destroy beam focusing. In the thesis, distortions of a weaklynonlinear diagnostic beam focused through a phase layer of special configuration were consideredexperimentally and theoretically. Feasibility of selective destruction of focusing of differentharmonics in the beam was predicted in the modeling and confirmed in experiment.The most modern HIFU devices rely on using two-dimensional multi-element phased arrayswith elements randomly distributed over a segment of a spherical surface. Numerical experimentis an important tool to characterize pressure fields created by HIFU radiators. Intensity levels atthe focus of HIFU radiators can reach several tens of thousands of W/cm2, causing nonlinearpropagation effects and formation of shocks [...]
|
Page generated in 0.0279 seconds