21 |
Large Eddy Simulations of the interactions between flames and thermal phenomena : application to wall heat transfer and combustion control / Simulations aux grandes échelles des interactions entre les flammes et les phénomènes thermiques : application au transfert de chaleur à la parois et au contrôle de la combustionMaestro, Dario 27 September 2018 (has links)
Les interactions entre les flammes et les phénomènes thermiques sont le fil conducteur de ce travail. En effet, les flammes produisent de la chaleur, mais peuvent aussi être affectées par des transferts ou des sources de chaleur. La Simulation aux Grandes Echelles (SGE) est utilisée ici pour étudier ces interactions, en mettant l’accent sur deux sujets principaux: le transfert de chaleur aux parois et le contrôle de la combustion. Dans un premier temps, on étudie le transfert de chaleur aux parois dans un modèle de brûleur CH4/O2 de moteur-fusée. Dans un contexte deréutilisabilité et de réduction des coûts des lanceurs, qui constituent des enjeux majeurs, de nouveaux couples de propergols sont envisagés et les flux thermiques à la paroi doivent êtreprécisément prédits. Le but de ce travail est d’évaluer les besoins et les performances des SGEpour simuler ce type de configuration et de proposer une méthodologie de calcul permettant desimuler différentes configurations. Les résultats numériques sont comparés aux donnéesexpérimentales fournies par la Technische Universität München (Allemagne). Dans un deuxième temps, le contrôle de la combustion au moyen de décharges de plasma de type NRP (en anglaisNanosecond Repetitively Pulsed) est étudié. Les systèmes de turbines à gaz modernes utilisent en effet une combustion pauvre dans le but de réduire la consommation de carburant et les émissions de polluants. Les flammes pauvres sont connues pour être sujettes à des instabilités et le contrôle de la combustion peut jouer un rôle majeur dans ce domaine. Un modèle phénoménologique qui considère les décharges de plasma comme une source de chaleur est développé et appliqué à un brûleur pauvre avec prémélange CH4/Air stabilisé par un swirler. LesSGE sont réalisées afin d’évaluer les effets des décharges NRP sur la flamme. Les résultats numériques sont comparés aux observations expérimentales faites à la King Abdulla University ofScience and Technology (Arabie Saoudite) / Interactions between flames and thermal phenomena are the guiding thread of this work. Flamesproduce heat indeed, but can also be affected by it. Large Eddy Simulations (LES) are used hereto investigate these interactions, with a focus on two main topics: wall heat transfer andcombustion control. In a first part, wall heat transfer in a rocket engine sub-scale CH4/O2 burner isstudied. In the context of launchers re-usability and cost reduction, which are major challenges,new propellant combinations are considered and wall heat fluxes have to be precisely predicted.The aim of this work is to evaluate LES needs and performances to simulate this kind ofconfiguration and provide a computational methodology permitting to simulate variousconfigurations. Numerical results are compared to experimental data provided by the TechnischeUniversität München (Germany). In a second part, combustion control by means of NanosecondRepetitively Pulsed (NRP) plasma discharges is studied. Modern gas turbine systems use indeedlean combustion with the aim of reducing fuel consumption and pollutant emissions. Lean flamesare however known to be prone to instabilities and combustion control can play a major role in thisdomain. A phenomenological model which considers the plasma discharges as a heat source isdeveloped and applied to a swirl-stabilized CH4/Air premixed lean burner. LES are performed inorder to evaluate the effects of the NRP discharges on the flame. Numerical results are comparedwith experimental observations made at the King Abdulla University of Science and Technology(Saudi Arabia).
|
22 |
Degradação do antibiótico bacitracina zíncica em meio aquoso através de processos oxidativos avançados. / Degradation of antibiotic zinc bacitracin in aqueous medium by advanced oxidation processes.Metolina, Patrícia 20 June 2018 (has links)
A presença de antibióticos no ecossistema representa um sério risco à saúde humana e animal em virtude do desenvolvimento crescente de resistência bacteriana. Uma vez que a maioria dos antibióticos é persistente à degradação biológica, os processos oxidativos avançados são apontados como uma das tecnologias mais efetivas para decompor esses compostos em águas residuárias. A bacitracina zíncica (Bc-Zn) é um potente antibiótico constituído por uma mistura complexa de peptídeos não-biodegradáveis, conjugados ao zinco. Apesar de ser um antibiótico amplamente consumido na medicina humana e animal, é preocupante a escassez de estudos que investigam sua degradação e destino ambiental. O presente trabalho analisou a degradação da Bc-Zn através dos processos de fotólise direta e UV/H2O2 em diferentes condições de radiação UVC e concentração inicial de H2O2. Os parâmetros cinéticos rendimento quântico da fotólise, constantes cinéticas de pseudo-primeira ordem e constante cinéticas de segunda ordem foram satisfatoriamente estimados pela modelagem do sistema fotoquímico experimental. Os resultados revelaram que a fotólise direta permitiu degradar todos os congêneres da mistura de Bc-Zn nas maiores doses de radiação UVC empregadas. No entanto, não houve remoção de TOC após 120 minutos de irradiação. A adição de H2O2 acelerou substancialmente a fotodegradação do antibiótico, apresentando constantes cinéticas de pseudo-primeira ordem uma ordem de grandeza superiores às obtidas por fotólise direta. Além disso, remoção considerável de até 71% do TOC foi alcançada. A análise estatística demonstrou que a radiação UV foi um fator bem mais significativo para a fotodegradação da Bc-Zn em relação à concentração inicial de H2O2, sendo as melhores condições do processo alcançadas para a maior taxa específica de emissão de fótons (1,11×10-5 Einstein L-1 s-1). Ensaios biológicos com soluções tratadas por fotólise direta e UV/H2O2 indicaram remoção completa da atividade antimicrobiana residual, ainda que os produtos da fotodegradação tenham se mostrado não-biodegradáveis. Análises de toxicidade indicaram que o metal zinco presente no antibiótico é responsável pela a toxicidade no micro-organismo-teste Vibrio fischeri. Estudos adicionais devem ser realizados para identificar os sub-produtos formados, bem como para investigar a degradação da Bc-Zn em efluentes industriais reais. / The presence of antibiotics in ecosystems represents a serious risk to human and animal health, caused by the increase in bacterial resistance. Since most antibiotics resist to biological degradation, advanced oxidation processes are pointed out as the most effective technologies for degrading these compounds in wastewater. Zinc bacitracin (Bc-Zn) is a potent antibiotic with a complex mixture of non-biodegradable peptides conjugated to zinc. Despite being a widely used antibiotic in human and animal medicine, the scarcity of studies dealing with its degradation and environmental fate is a matter of concern. In this work, Bc-Zn degradation by direct photolysis and the UV/H2O2 process was investigated for different UVC radiation conditions and initial H2O2 concentrations. Kinetic parameters, namely the photolysis quantum yield, pseudo-first order kinetic constants and second-order kinetic constants, were satisfactorily estimated from experimental data by modeling the photochemical system. The results showed that all the congeners of the Bc-Zn mixture were photolyzed at the highest UVC doses applied, while no TOC removal was observed after 120 minutes of irradiation. The addition of H2O2 substantially accelerated Bc-Zn photodegradation, with pseudo-first order kinetic constants of one order of magnitude higher than those observed under direct photolysis. In addition, a remarkable removal of up to 71% of TOC was achieved. Statistical analyses showed that UV radiation had a much more important effect on Bc-Zn photodegradation in comparison with initial H2O2 concentration, with the best process conditions achieved for the highest specific photon emission rate (1.11×10-5 Einstein L-1 s-1). Biological assays carried out with the solutions treated by direct photolysis and UV/H2O2 revealed no residual antimicrobial activity, though photodegradation products remained non-biodegradable. In addition, toxicity analyses indicated that the zinc metal present in the antibiotic is responsible for the toxic effect on the test microorganism Vibrio fischeri. Finally, further studies should be performed to identify the by-products formed and to investigate Bc-Zn degradation in real industrial wastewater.
|
23 |
Degradação do antibiótico bacitracina zíncica em meio aquoso através de processos oxidativos avançados. / Degradation of antibiotic zinc bacitracin in aqueous medium by advanced oxidation processes.Patrícia Metolina 20 June 2018 (has links)
A presença de antibióticos no ecossistema representa um sério risco à saúde humana e animal em virtude do desenvolvimento crescente de resistência bacteriana. Uma vez que a maioria dos antibióticos é persistente à degradação biológica, os processos oxidativos avançados são apontados como uma das tecnologias mais efetivas para decompor esses compostos em águas residuárias. A bacitracina zíncica (Bc-Zn) é um potente antibiótico constituído por uma mistura complexa de peptídeos não-biodegradáveis, conjugados ao zinco. Apesar de ser um antibiótico amplamente consumido na medicina humana e animal, é preocupante a escassez de estudos que investigam sua degradação e destino ambiental. O presente trabalho analisou a degradação da Bc-Zn através dos processos de fotólise direta e UV/H2O2 em diferentes condições de radiação UVC e concentração inicial de H2O2. Os parâmetros cinéticos rendimento quântico da fotólise, constantes cinéticas de pseudo-primeira ordem e constante cinéticas de segunda ordem foram satisfatoriamente estimados pela modelagem do sistema fotoquímico experimental. Os resultados revelaram que a fotólise direta permitiu degradar todos os congêneres da mistura de Bc-Zn nas maiores doses de radiação UVC empregadas. No entanto, não houve remoção de TOC após 120 minutos de irradiação. A adição de H2O2 acelerou substancialmente a fotodegradação do antibiótico, apresentando constantes cinéticas de pseudo-primeira ordem uma ordem de grandeza superiores às obtidas por fotólise direta. Além disso, remoção considerável de até 71% do TOC foi alcançada. A análise estatística demonstrou que a radiação UV foi um fator bem mais significativo para a fotodegradação da Bc-Zn em relação à concentração inicial de H2O2, sendo as melhores condições do processo alcançadas para a maior taxa específica de emissão de fótons (1,11×10-5 Einstein L-1 s-1). Ensaios biológicos com soluções tratadas por fotólise direta e UV/H2O2 indicaram remoção completa da atividade antimicrobiana residual, ainda que os produtos da fotodegradação tenham se mostrado não-biodegradáveis. Análises de toxicidade indicaram que o metal zinco presente no antibiótico é responsável pela a toxicidade no micro-organismo-teste Vibrio fischeri. Estudos adicionais devem ser realizados para identificar os sub-produtos formados, bem como para investigar a degradação da Bc-Zn em efluentes industriais reais. / The presence of antibiotics in ecosystems represents a serious risk to human and animal health, caused by the increase in bacterial resistance. Since most antibiotics resist to biological degradation, advanced oxidation processes are pointed out as the most effective technologies for degrading these compounds in wastewater. Zinc bacitracin (Bc-Zn) is a potent antibiotic with a complex mixture of non-biodegradable peptides conjugated to zinc. Despite being a widely used antibiotic in human and animal medicine, the scarcity of studies dealing with its degradation and environmental fate is a matter of concern. In this work, Bc-Zn degradation by direct photolysis and the UV/H2O2 process was investigated for different UVC radiation conditions and initial H2O2 concentrations. Kinetic parameters, namely the photolysis quantum yield, pseudo-first order kinetic constants and second-order kinetic constants, were satisfactorily estimated from experimental data by modeling the photochemical system. The results showed that all the congeners of the Bc-Zn mixture were photolyzed at the highest UVC doses applied, while no TOC removal was observed after 120 minutes of irradiation. The addition of H2O2 substantially accelerated Bc-Zn photodegradation, with pseudo-first order kinetic constants of one order of magnitude higher than those observed under direct photolysis. In addition, a remarkable removal of up to 71% of TOC was achieved. Statistical analyses showed that UV radiation had a much more important effect on Bc-Zn photodegradation in comparison with initial H2O2 concentration, with the best process conditions achieved for the highest specific photon emission rate (1.11×10-5 Einstein L-1 s-1). Biological assays carried out with the solutions treated by direct photolysis and UV/H2O2 revealed no residual antimicrobial activity, though photodegradation products remained non-biodegradable. In addition, toxicity analyses indicated that the zinc metal present in the antibiotic is responsible for the toxic effect on the test microorganism Vibrio fischeri. Finally, further studies should be performed to identify the by-products formed and to investigate Bc-Zn degradation in real industrial wastewater.
|
24 |
Ultrastructural and Molecular Analyses of the Unique Features of Cell Division in Mycobacterium Tuberculosis and Mycobacterium SmegmatisVijay, Srinivasan January 2013 (has links) (PDF)
The Mycobacterium genus contains major human pathogens, like Mycobacterium tuberculosis and Mycobacterium leprae, which are the causative agents of Tuberculosis and Leprosy, respectively. They have evolved as successful human pathogens by adapting to the adverse conditions prevailing inside the host, which include host immune activation, nutrient depletion, hypoxia, and so on. During such adaptation for the survival and establishment of persistent infection inside the host, the pathogen, like M. tuberculosis, regulates its cell division. It is known that M. tuberculosis enters a state of non-replicating persistence (NRP) inside the host, to establish latent infection, which helps the survival of the pathogen under adverse host conditions such as hypoxia and nutrient depletion. The pathogen can reactivate itself, to come out of the NRP state, and establish active infection at a later stage, when conditions are suitable for its proliferation. The altered physiological state of the latent bacterium makes it tolerant to drugs, which are only effective against proliferating tubercle bacilli. In view of this unique behavioural physiology of tubercle bacilli, it is important to study the process of cell division and how it is regulated in the NRP and actively growing states. The work reported in the thesis is an attempt to understand these aspects of mycobacterial cell division.
iii
Chapter 1. Introduction: This chapter gives a detailed introduction to bacterial cell division and its regulation in various organisms, like Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and others. In the background of this information, the major studies on mycobacterial cell division and its regulation are presented.
Chapter 2. Materials and Methods: This chapter describes in detail all the materials and methods used in the experiments, which are presented in the four data chapters, 3-6.
Chapter 3. Ultrastructural Study of the Formation of Septal Partition and Constriction in Mycobacteria and Delineation of its Unique Features: Mycobacteria have triple-layered complex cell wall, playing an important role in its survival under adverse conditions in the host. It is not known how these layers in the mother cell participate during cell division. Therefore, the ultrastructural changes in the different envelope layers of Mycobacterium tuberculosis, Mycobacterium smegmatis, and Mycobacterium xenopi, during the process of septation and septal constriction, were studied, using Transmission and Scanning Electron Microscopy. The unique aspects of mycobacterial septation and constriction were identified and were compared with those of E. coli and Bacillus subtilis septation. Further, based on all these observations, models were proposed for septation in M. tuberculosis and M. smegmatis.
Chapter 4. Identification of Asymmetric Septation and Division in Mycobacteria and Its Role in Generating Cell Size Heterogeneity: Bacterial populations are known to harbour phenotypic heterogeneity that helps survival under stress conditions, as this heterogeneity comprises subpopulations that have differential susceptibility to stress conditions. The
iv
heterogeneity has been known to lead to the requirement for prolonged drug treatment for the elimination of the tolerant subpopulation. Hence, it is important to study the different mechanisms, which operate to generate population heterogeneity. Therefore, in this chapter, studies were carried out to find out whether asymmetric septation and division occur in mycobacteria to generate cell size heterogeneity. Subpopulations of mycobacterial mid-log phase cells of M. tuberculosis, M. smegmatis, and M. xenopi were found to undergo asymmetric division to generate cell size heterogeneity. The asymmetric division and the ultrastructure and growth features of the products of the division were studied.
Chapter 5. Study of Mycobacterial Cell Division Using Growth-Synchronised Cells: In this chapter, different stages of cell septation and constriction were studied using growth-synchronised M. smegmatis cells. Phenethyl alcohol (PEA), which has been found to reversibly arrest mycobacterial cells, was used for growth synchronisation. The growth-synchronised mycobacterial cells, which were released from PEA block, were studied at different stages of septation and septal constriction, at the ultrastructural and molecular levels.
Chapter 6. Identification of the Stage of Cell Division Arrest in NRP Mycobacteria: The exact stage at which the NRP tubercle bacilli are arrested in cell division is currently unknown. In Wayne’s in vitro model for hypoxia-responsive tubercle bacilli, gradual depletion of oxygen leads to hypoxic stress, inducing the bacilli to enter non-replicating persistence (NRP) state. Using this model, the stage of cell division arrest in M. tuberculosis was characterised at the ultrastructural and molecular levels. Hypoxia-stressed M. smegmatis was used as an experimental system for contrast.
The thesis concludes with salient findings, a bibliography, and the list of publications.
|
Page generated in 0.0218 seconds