• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 24
  • 19
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 151
  • 64
  • 52
  • 41
  • 38
  • 31
  • 29
  • 26
  • 24
  • 22
  • 17
  • 15
  • 15
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Anisotropic Morphologies and Properties in Perfluorosulfonate Ionomer-Based Materials

Park, Jong Keun 24 January 2010 (has links)
The overall goal of this investigation was to elucidate specific structure-property relationships in perfluorosulfonate ionomers (PFSIs)-related materials. The project can be broken into two primary foci. First, we explored the current state of understanding related to morphology-property relationships in PFSIs with specific attention to the nano-scale organization of the ionic and crystalline domains. Specifically, the effect of uniaxial orientation on the structure and transport properties of Nafion® membranes was examined. Small angle X-ray scattering (SAXS) experiments on dry membranes that were uniaxially elongated showed a strong anisotropic morphology which was shown to persist over the swelling process without a significant relaxation. Herman's order parameters for the ionomer peak were strongly influenced by uniaxial deformation, which supports the presence of cylindrical rather than spherical morphology for ionic domains. Comparison of the water diffusion coefficients between unoriented and oriented samples revealed that uniaxial deformation of Nafion® membranes essentially enhances transport ability in one direction (i.e., the parallel to draw direction) and suppresses in the other two directions (i.e., two orthogonal directions relative to the stretching direction). Based on 1-dimensional analyses of oriented SAXS patterns at the azimuthal angle 90o, three recent models (lamellar model, semicrystalline rod-like model and fringed-micelle model) for the morphology of PFSIs were critically evaluated. The loss of meridional scattering, different orientation behavior of the crystalline and ionic domains, and inherent chain stiffness precludes the possibility of a chain-folded lamellar morphology. While the inter-aggregate dimensions remain constant at high draw ratios, the inter-crystalline spacings decrease significantly. Coupled with the distinctly different orientation behavior, these observations preclude the existence of crystallites solely within rod-like aggregates. While the worm-like ionic channel model was able to explain the behavior of SAXS and wide angle X-ray scattering (WAXS) relatively well, this model also had limitations such as (1) crystalline domains directly linked to the ionic domain (and thus a lack of amorphous domains) and (2) a presence of only a single ionic channel between two neighboring crystallites. Second, electroactive materials, specifically ionic polymer-metal composites (IPMCs) that undergo bending motions with the stimulus of a relatively weak electric field were fabricated. To understand the role of the nanoscale morphology of the membrane matrix in affecting the actuation behavior of IPMC systems, we evaluated actuation performance of IPMCs subjected to uniaxial orientation. The PFSI nanostructure altered by uniaxial orientation mimicked the fibrillar structure of biological muscle tissue and yielded a new anisotropic actuation response. It was evident that IPMCs cut from films oriented perpendicular to the draw direction yielded displacement values that were significantly greater than that of unoriented IPMCs. In contrast, IPMCs cut from films oriented parallel to the draw direction appeared to resist bending and yield displacement values that were much less than that of the unoriented IPMC. This anisotropic actuation behavior was attributed to the contribution of the nanoscale morphology to the bulk bending modulus. Overall, this study clearly demonstrated, for the first time, the importance of the nanoscale morphology in affecting/controlling the actuation behavior in IPMC systems. / Ph. D.
122

Morphological Characterization and Analysis of Ion-Containing Polymers Using Small Angle X-ray Scattering

Zhang, Mingqiang 03 February 2015 (has links)
Small angle X-ray scattering (SAXS) has been widely used in polymer science to study the nano-scale morphology of various polymers. The data obtained from SAXS give information about sizes and shapes of macromolecules, characteristic distances of partially ordered materials, pore sizes, and so on. The understanding of these structural parameters is crucial in polymer science in that it will help to explain the origin of various properties of polymers, and guide design of future polymers with desired properties. We have been able to further develop the contrast variation method in SAXS to study the morphology of Nafion 117CS containing different alkali metal ions in solid state. Contrast variation allows one to manipulate scattering data to obtain desired morphological information. At room temperature, only the crystalline peak was found for Na⁺-form Nafion, while for Cs⁺-form Nafion only the ionic peak was observed. The utilization of one dimensional correlation function on different counterion forms of Nafion further demonstrates the necessity of contrast variation method in obtaining more detailed morphological information of Nafion. This separation of the ionic peak and the crystalline peak in Nafion provides a means to independently study the crystalline and ionic components without each other's effect, which could be further applied to other ionomer systems. We also designed time resolved SAXS experiments to study the morphological development during solution processing Nafion. As solvent was removed from Nafion dispersion through evaporation, solid-state morphological development occurred through a variety of processes including phase-inversion, aggregation of interacting species (e.g., ionic functionalities), and crystallization of backbone segments. To probe the real-time morphological development during membrane processing that accurately simulates industrial protocols, a unique sample cell has been constructed that allows for through-film synchrotron SAXS data acquisition during solvent evaporation and film formation. For the first time, this novel experiment allows for a complete analysis of structural evolution from solution/dispersion to solid-state film formation, and we were able to show that the crystallites within Nafion develop later than the formation of ionic domains, and they do not reside in the cylindrical particles, but are dispersed in solution/dispersion. Besides bulk morphology of Nafion, we have also performed Grazing Incident SAXS to study the surface morphology of Nafion. We were able to manipulate the surface morphology of Nafion via neutralizing H⁺-form Nafion with different large organic counterions, as well as annealing Nafion thin films under different temperatures. This not only allows to obtain more detailed information of the nano-structures in Nafion thin films, but also provides a means to achieve desired morphology for better fuel cell applications. We have also been able to study the polymer chain conformation in solution via measuring persistence length by utilizing solution SAXS. Different methods have been applied to study the SAXS profiles, and the measured persistence lengths for stilbene and styrenic alternating copolymers range from 2 to 6 nm, which characterizes these copolymers into a class of semi-rigid polymers. This study allows to elucidate the steric crowding effect on the chain stiffness of these polymers, which provides fundamental understanding of polymer chain behaviors in solution. Self-assembling in block copolymers has also been studied using SAXS. We established a morphological model for a multiblock copolymer used as a fuel cell material from General Motors®, and this morphological model could be used to explain the origins of the mechanical and transport properties of this material. Furthermore, several other block copolymers have been studied using SAXS, which showed interesting phase separated morphologies. These morphological data have been successfully applied to explain the origins of various properties of these block copolymers, which provide fundamental knowledge of structure-property relationship in block copolymers. / Ph. D.
123

Synthesis of Diazonium (Perfluoroalkyl) Arylsulfonimide Monomers from Perfluoro (3-Oxapent-4-ene) Sulfonyl Fluoride for Proton Exchange Membrane Fuel Cell

Ibrahim, Faisal 01 May 2016 (has links)
Two diazonium perfluoroalkyl arylsulfonimide (PFSI) zwitterionic monomers, 4-diazonium perfluoro(3-oxapent-4-ene)benzenesulfonimide (I) and 4-(trifluoromethyl)-2-diazonium perfluoro(3-oxapent-4-ene)benzenesulfonimide (II) have been synthesized from perfluoro(3-oxapent-4-ene) sulfonyl fluoride (POPF) for proton exchange membrane fuel cells. PFSI polymers are proposed as new electrolytes due to their better thermal stability, inertness to electrochemical conditions, and lower susceptibility to oxidative degradation and dehydration. For a better integration between the electrode and the electrolyte, the PFSI polymers are expected to be grafted onto the carbon electrode via the diazonium moiety. All the reaction intermediates and the final product were characterized with 1H NMR, 19F NMR and IR spectroscopies.
124

Diazonium 4-(trifluorovinyloxy) Perfluorobutanesulfonyl Benzenesulfonimide Zwitterionic Monomer Synthesis

Addo, Isaac D 01 December 2016 (has links)
3-Diazonium- 4-(trifluorovinyloxy) - perfluorobutanesulfonyl benzenesulfonimide zwitterionic monomer (see figure 1) is proposed to be polymerized and further act as a new electrolyte for Polymer exchange membrane fuel cells (PEMFCs). One reason is that, the aromatic trifluorovinyl aryl ether (TFVE) group can easily be homopolymerized to aromatic perfluorocyclobutane (PFCB) polymer. Furthermore, the diazonium moiety in the monomer is expected to covalently attach the electrolyte to the carbon electrodes support. The perfluoroalkyl(aryl) sulfonimide (PFSI) pendant provides good chemical and mechanical stability as well as better proton conductivity. Several multi-step synthetic schemes are designed to obtain such monomer from perfluoroalkyl(aryl) sulfonimide (PFSI). Among them, the purified coupling product 4-OCF2CF2Br-3-NO2-PhSO2(M) SO2C4F9 from the first approach was successfully completed. The next stages of the work will involve dehalogenation, reduction, and diazotization to achieve the targeting monomer. All the intermediates were characterized by 1H and 19F NMR and FT-IR spectroscopy.
125

Étude physico-chimique de liquides ioniques protoniques pour piles à combustible PEMFCs

Hanna, Maha 16 December 2008 (has links) (PDF)
Les liquides ioniques pourront remplacer l'eau dans les électrolytes des PEMFCs opérant à 130°C. Les liquides ioniques résultant de la neutralisation des amines aliphatiques par l'acide trifluoromethanesulfonique montrent que les points de fusion dépendent de plusieurs critères, nature de l'anion, nature des substitutions sur l'amine. D'autre part, la majorité de ces sels sont thermiquement stables jusqu'à 400°C. L'étude par la voltamétrie cyclique a prouvé que les amines et les sels (HNR3+, A) s'oxydent à des potentiels très élevés (> 1,9 V/ESH), compatible avec leur utilisation dans les piles à combustible. D'autre part, les meilleures conductivités sont obtenues par les sels résultant de l'association acide trifluoromethanesulfonique et amines dissymétriques. Les conductivités à 130°C sont entre 5 mS.cm-1 et 45 mS.cm-1. L'incorporation de ces composés dans le Nafion a donné une bonne compatibilité LIP/Nafion. Cependant, l'effet plastifiant du LIP sur le polymère diminue les propriétés mécaniques du Nafion. Les conductivités sont aussi nettement réduites d'un facteur de 5 dans les meilleurs cas.
126

Materials for future power sources

Ludvigsson, Mikael January 2000 (has links)
<p>Proton exchange membrane fuel cells and lithium polymer batteries are important as future power sources in electronic devices, vehicles and stationary applications. The development of these power sources involves finding and characterising materials that are well suited r the application.</p><p>The materials investigated in this thesis are the perfluorosulphonic ionomer Nafion<sup>TM </sup>(DuPont) and metal oxides incorporated into the membrane form of this material. The ionomer is used as polymer electrolyte in proton exchange membrane fuel cells (PEMFC) and the metal oxides are used as cathode materials in lithium polymer batters (LPB).</p><p>Crystallinity in cast Nafion films can be introduced by ion beam exposure or aging. Spectroscopic investigations of the crystallinity of the ionomer indicate that the crystalline regions contain less water than amorphous regions and this could in part explain the drying out of the polymer electrolyte membrane in a PEMFC.</p><p>Spectroscopic results on the equilibrated water uptake and the state of water in thin cast ionomer films indicate that there is a full proton transfer from the sulphonic acid group in the ionomer when there is one water molecule per sulphonate group.</p><p>The LPB cathode materials, lithium manganese oxide and lithium cobalt oxide, were incorporated <i>in situ</i> in Nafion membranes. Other manganese oxides and cobalt oxides were incorporated <i>in situ</i> inside the membrane. Ion-exchange experiments from HcoO<sub>2 </sub>to LiCoO<sub>2 </sub>within the membrane were also successful.</p><p>Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction were used for the characterisation of the incorporated species and the Nafion film/membrane.</p>
127

Nanocomposite-graphene based platform for heavy metal detection

Willemse, Chandre Monique January 2010 (has links)
This study reports the synthesis of graphene by oxidizing graphite to graphite oxide using H2SO4 and KMnO4 and reducing graphene oxide to graphene by using NaBH4. Graphene was then characterized using FT-IR, TEM, AFM, XRD, Raman spectroscopy and solid state NMR. Nafion-Graphene in combination with a mercury film electrode, bismuth film electrode and antimony film electrode was used as a sensing platform for trace metal analysis in 0.1 M acetate buffer (pH 4.6) at 120 s deposition time, using square-wave anodic stripping voltammetry (SWASV). Detection limits were calculated using 3σblank/slope. For practical applications recovery studies was done by spiking test samples with known concentrations of metal ions and comparing the results to inductively coupled plasma mass spectrometry (ICPMS). This was then followed by real sample analyses.
128

Materials for future power sources

Ludvigsson, Mikael January 2000 (has links)
Proton exchange membrane fuel cells and lithium polymer batteries are important as future power sources in electronic devices, vehicles and stationary applications. The development of these power sources involves finding and characterising materials that are well suited r the application. The materials investigated in this thesis are the perfluorosulphonic ionomer NafionTM (DuPont) and metal oxides incorporated into the membrane form of this material. The ionomer is used as polymer electrolyte in proton exchange membrane fuel cells (PEMFC) and the metal oxides are used as cathode materials in lithium polymer batters (LPB). Crystallinity in cast Nafion films can be introduced by ion beam exposure or aging. Spectroscopic investigations of the crystallinity of the ionomer indicate that the crystalline regions contain less water than amorphous regions and this could in part explain the drying out of the polymer electrolyte membrane in a PEMFC. Spectroscopic results on the equilibrated water uptake and the state of water in thin cast ionomer films indicate that there is a full proton transfer from the sulphonic acid group in the ionomer when there is one water molecule per sulphonate group. The LPB cathode materials, lithium manganese oxide and lithium cobalt oxide, were incorporated in situ in Nafion membranes. Other manganese oxides and cobalt oxides were incorporated in situ inside the membrane. Ion-exchange experiments from HcoO2 to LiCoO2 within the membrane were also successful. Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction were used for the characterisation of the incorporated species and the Nafion film/membrane.
129

Membrane Electrode Assemblies Based on Hydrocarbon Ionomers and New Catalyst Supports for PEM Fuel Cells

von Kraemer, Sophie January 2008 (has links)
The proton exchange membrane fuel cell (PEMFC) is a potential electrochemicalpower device for vehicles, auxiliary power units and small-scale power plants. In themembrane electrode assembly (MEA), which is the core of the PEMFC single cell,oxygen in air and hydrogen electrochemically react on separate sides of a membraneand electrical energy is generated. The main challenges of the technology are associatedwith cost and lifetime. To meet these demands, firstly, the component expensesought to be reduced. Secondly, enabling system operation at elevated temperatures,i.e. up to 120 °C, would decrease the complexity of the system and subsequentlyresult in decreased system cost. These aspects and the demand for sufficientlifetime are the strong motives for development of new materials in the field.In this thesis, MEAs based on alternative materials are investigatedwith focus on hydrocarbon proton-conducting polymers, i.e. ionomers, and newcatalyst supports. The materials are evaluated by electrochemical methods, such ascyclic voltammetry, polarisation and impedance measurements; morphological studiesare also undertaken. The choice of ionomers, used in the porous electrodes andmembrane, is crucial in the development of high-performing stable MEAs for dynamicoperating conditions. The MEAs are optimised in terms of electrode compositionand preparation, as these parameters influence the electrode structure andthus the MEA performance. The successfully developed MEAs, based on the hydrocarbonionomer sulfonated polysulfone (sPSU), show promising fuel cell performancein a wide temperature range. Yet, these membranes induce mass-transportlimitations in the electrodes, resulting in deteriorated MEA performance. Further,the structure of the hydrated membranes is examined by nuclear magnetic resonancecryoporometry, revealing a relation between water domain size distributionand mechanical stability of the sPSU membranes. The sPSU electrodes possessproperties similar to those of the Nafion electrode, resulting in high fuel cell performancewhen combined with a high-performing membrane. Also, new catalystsupports are investigated; composite electrodes, in which deposition of platinum(Pt) onto titanium dioxide reduces the direct contact between Pt and carbon, showpromising performance and ex-situ stability. Use of graphitised carbon as catalystsupport improves the electrode stability as revealed by a fuel cell degradation study.The thesis reveals the importance of a precise MEA developmentstrategy, involving a broad methodology for investigating new materials both as integratedMEAs and as separate components. As the MEA components and processesinteract, a holistic approach is required to enable successful design of newMEAs and ultimately development of high-performing low-cost PEMFC systems. / QC 20100922
130

Preparation And Performance Of Membrane Electrode Assemblies With Nafion And Alternative Polymer Electrolyte Membranes

Sengul, Erce 01 September 2007 (has links) (PDF)
Hydrogen and oxygen or air polymer electrolyte membrane fuel cell is one of the most promising electrical energy conversion devices for a sustainable future due to its high efficiency and zero emission. Membrane electrode assembly (MEA), in which electrochemical reactions occur, is stated to be the heart of the fuel cell. The aim of this study was to develop methods for preparation of MEA with alternative polymer electrolyte membranes and compare their performances with the conventional Nafion&reg / membrane. The alternative membranes were sulphonated polyether-etherketone (SPEEK), composite, blend with sulphonated polyethersulphone (SPES), and polybenzimidazole (PBI). Several powder type MEA preparation techniques were employed by using Nafion&reg / membrane. These were GDL Spraying, Membrane Spraying, and Decal methods. GDL Spraying and Decal were determined as the most efficient and proper MEA preparation methods. These methods were tried to improve further by changing catalyst loading, introducing pore forming agents, and treating membrane and GDL. The highest performance, which was 0.53 W/cm2, for Nafion&reg / membrane was obtained at 70 0C cell temperature. In comparison, it was about 0.68 W/cm2 for a commercial MEA at the same temperature. MEA prepared with SPEEK membrane resulted in lower performance. Moreover, it was found that SPEEK membrane was not suitable for high temperature operation. It was stable up to 80 0C under the cell operating conditions. However, with the blend of 10 wt% SPES to SPEEK, the operating temperature was raised up to 90 0C without any membrane deformation. The highest power outputs were 0.29 W/cm2 (at 70 0C) and 0.27 W/cm2 (at 80 0C) for SPEEK and SPEEK-PES blend membrane based MEAs. The highest temperature, which was 150 0C, was attained with PBI based MEA during fuel cell tests.

Page generated in 0.064 seconds