• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 22
  • 14
  • 6
  • 5
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 155
  • 28
  • 27
  • 23
  • 23
  • 19
  • 18
  • 18
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Threshold photo-ionisation and density functional theory studies of metal-carbide clusters.

Dryza, Viktoras January 2008 (has links)
Neutral gas-phase metal-carbide clusters are generated by laser ablation and are detected in the constructed time-of-flight mass-spectrometer by laser ionisation. Photo-ionisation efficiency (PIE) experiments are performed on the metal-carbide clusters to determine their ionisation potentials (IPs). Complimentary density functional theory (DFT) calculations are performed on the energetically favorable structural isomers of the metalcarbide clusters. Comparison between the calculated IPs of the isomers and the experimental IP allows the carrier of the observed ionisation onset for a metal-carbide cluster to be assigned. The niobium-carbide clusters Nb₃Cy (y = 0–4), Nb₄Cy (y = 0–6) and Nb₅Cy (y = 0–6) are examined by PIE experiments and DFT calculations. The IPs of the niobium-carbide clusters are found to be either left reasonably unchanged from the IPs of the bare metal clusters or moderately reduced. The clusters Nb₃C₂, Nb₄C₄, Nb₅C₂ and Nb₅C₃ display the largest IP reductions for their corresponding cluster series. The structures assigned to the IPs of the Nb₃Cy (y = 1–3) clusters are based on the carbon atoms attaching to the niobium faces and/or niobium-niobium edges of the triangular Nb₃ cluster. However, for Nb₃C₄ the ionisation onset is assigned to a low-lying isomer, which contains a molecular C₂ unit, rather than the lowest energy isomer, a niobium atom deficient 2×2×2 face-centred cubic (fcc) nanocrystal structure. The structures assigned to the IPs of the Nb₄Cy (y = 1–4) clusters are based on the carbon atoms attaching in turn to the niobium faces of the tetrahedral Nb₄ cluster, developing a 2×2×2 fcc nanocrystal structure for Nb₄C₄. For Nb₄C₃ two ionisation onsets are observed; one weak onset at low energy and another more intense onset at high energy. It is proposed that the two onsets are due to ionisation from both a metastable ³A₁ state and the ground ¹A₁ state of the lowest energy isomer. The ionisation onsets of Nb₄C₅ and Nb₄C₆ are also proposed to originate from metastable triplet states of the lowest energy isomers, with the transitions from the ground singlet states calculated to be greater than the highest achievable photon energy in the laboratory. The structures of Nb₄C₅ and Nb₄C₆ have one and two carbon atoms in a 2×2×2 fcc nanocrystal substituted with molecular C₂ units, respectively. The structures assigned to the IPs of the Nb₅Cy (y = 1–6) clusters are based on the underlying Nb₅ cluster being in either a “prolate” or “oblate” trigonal bipyramid geometry; the former has six niobium faces available for carbon addition, while the latter has two niobium butterfly motifs and two niobium faces available for carbon addition. Both the structures of Nb₅C₅ and Nb₅C₆ have the underlying Nb₅ cluster in the oblate trigonal bipyramid geometry and contain one and two molecular C₂ units, respectively. The tantalum-carbide clusters Ta₃Cy (y = 0–3), Ta₄Cy (y = 0–4) and Ta₅Cy (y = 0–6) are examined by PIE experiments and DFT calculations. The IPs of the tantalum-carbide clusters in each series show trends that are very similar to the corresponding iso-valent niobium-carbide cluster series, although the IP reductions upon carbon addition are smaller for the former. For the vast majority of tantalum-carbide clusters, the same structural isomer is assigned to the ionisation onset as that assigned for the corresponding niobium-carbide cluster. Bimetallic tantalum-zirconium-carbide clusters are generated using a constructed double ablation cluster source. The Ta₃ZrCy (y = 0–4) clusters are examined by PIE experiments and DFT calculations. The IP trend for the Ta₃ZrCy cluster series is reasonably similar to that of the Ta₄Cy cluster series, although the IP reductions upon carbon addition are greater for the former. The structures assigned to the IPs of the Ta₃ZrCy (y = 1–4) clusters are based on the carbon atoms attaching in turn to the metal faces of the tetrahedral Ta₃Zr cluster. In summary, the work presented in this thesis demonstrates that the structures of metalcarbide clusters can be inferred by the determination of their IPs through PIE experiments in combination with DFT calculations on candidate structural isomers. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1347219 / Thesis (Ph.D.) - University of Adelaide, School of Chemistry and Physics, 2008
82

Nanocelluloses as potential materials for specialty papers / Use of nanocellulose as potential material for specialty papers

Bardet, Raphael 14 November 2014 (has links)
L’originalité de ce travail est d’étudier la contribution des nanocelluloses pour lafonctionnalisation des papiers spéciaux. Il y a deux types de nanocellulose, les nanocristauxde cellulose (NCCs) et les microfibrilles de cellulose (MFCs). Il en résulte des propriétésdifférentes à l’état de suspension et à l’état sec. La propriété des MFCs de former un réseaud’enchevêtrement est utilisée pour la dispersion des particules. L’auto-assemblage des NCCsa permis d’élaborer des films iridescents. Ces films ont été considérés comme couchesmodèles puis ensuite mis en oeuvre dans le procédé de fabrication des papiers. Il a été proposéavec succès d’utiliser les MFCs dans le couchage pour réduire la quantité de pigmentsopacifiants pour les papiers minces, et de fabriquer des pigments iridescents pour obtenir despropriétés d’anti-contrefaçon. Ces approches ont été validées à l’échelle laboratoire mais aussipilote. / The original feature of this work is to investigate the contribution of two families ofnanocellulose for their application within specialty papers. It exists two families ofnanocellulose, i.e. Cellulose Nanocrystals (CNCs) and Cellulose Nanofibers (CNFs). It resultsin different properties in suspension and solid states. CNFs with their ability to formentangled network are used as dispersive network for particles. In contrast, the self-assemblyproperties of CNC are used to obtain iridescent films. First, the films based on nanocellulosewere considered as model layers. Then, results were implemented at the industrial scalewithin the papermaking process. It is proposed to use CNF based coating for savingopacifying pigments in lightweight paper, and manufacturing iridescent pigment to impartanti-counterfeiting properties. These sustainable and cost-effective approaches were thenvalidated at pilot scale.
83

Síntese e estudo da auto-organização de membranas de superredes binárias baseadas em nanopartículas de ferritas / Syntheses and self-assembled binary nanocrystal superlattices of ferrites

Herbert Rodrigo Neves 08 December 2017 (has links)
O estudo do ordenamento de nanopartículas em estruturas bi e tridimensionais, também conhecidas como superredes, é de grande interesse científico e tecnológico, tanto pelo interesse em se explicar a origem e as consequências deste fenômeno, quanto pelas possibilidades de aplicação oriundas das propriedades observadas nestes sistemas. Quando são utilizados dois tipos de nanomateriais diferentes em tamanho e/ou composição química, tem-se a formação de superredes binárias. Estas estruturas apresentam propriedades que são resultado das propriedades individuais de seus constituintes e, além disso, do conjunto de interações que existem no sistema. Graças a este conjunto de propriedades e interações coletivas, o princípio de se empregar nanopartículas como \"building blocks\" para a criação ou aprimoramento de dispositivos funcionais. Assim, neste trabalho são discutidas as sínteses de óxidos magnéticos do tipo MFe2O4 (com M = Co, Fe ou Mn) e as características necessárias para o emprego destes na formação de superredes de nanopartículas. Os materiais foram sintetizados procurando-se alcançar uma estreita distribuição de tamanho e homogeneidade quanto à forma. Foram empregados sistemas de nanopartículas nos estudos para a formação de superredes que apresentaram polidispersividade entre 6 e 20%, de forma a discutir o efeito desta propriedade no ordenamento das nanopartículas. Observou-se que o ordenamento em escala macroscópica é fortemente influenciado pela tensão de superfície da subfase, enquanto que o arranjo local das nanopartículas em relação aos seus vizinhos mais próximos é mais influenciado pela taxa de evaporação do solvente e pelas interações interpartículas. Para a formação de superestruturas binárias foram empregadas as nanopartículas de CoO/CoFe2O4 com 9,6 nm ou de Fe3O4 de 10,7 nm, com nanopartículas de CdSe de 3,6 nm. Os sistemas de nanopartículas binárias apresentaram arranjos do tipo AlB2 e tiveram, em sua maioria, crescimento na forma de supercristais facetados. A formação de estruturas bidimensionais com crescimento ao longo do plano da membrana foi favorecida pelo aumento na proporção das nanopartículas de maior diâmetro em relação às menores. A compreensão do fenômeno de auto-organização em membranas de superredes binárias possibilita a obtenção de novos materiais nanoestruturados e que apresentem propriedades moduladas. / Self-assembly nanoparticles into superlattices array have attracted significant attention both for the scientific understanding of nanocrystals ordering process and the development of new functional devices using bottom up techniques. The co-assembly of two types of nanoparticles in binary nanoparticles superlattices provides a new way to design metamaterials with unusual and modulated properties. These unusual properties arise from interparticle interactions in the superlattice structure, and from nanoparticles physical properties. To obtain highly ordered structures, it is required that nanocrystals have narrow size distribution. This thesis presents the synthesis of oxide magnetic nanoparticles (MFe2O4; M = Co, Fe, or Mn) and their application as building blocks in nanocrystal superlattices. Nanoparticles presented size distribution from 6% to 20%, and their assemblies has shown amorphous structure when samples have size distribution above 10%. Self-assembled nanoparticles superlattices in the liquid-air interface were obtained using either single or binary components. Single component superlattices were used as model for the understand of self-assembly process, which depends on subphase surface tension and dispersion evaporation rate. Nanocrystals superlattices were obtained from CdSe nanoparticles, with average size of 3,6 nm, and CoO/CoFe2O4 with size of 9,6 nm, and was observed a AlB2-type superstructure. The same superlattice structure was obtained for CdSe and Fe3O4, with average size of 10,7 nm, which indicate that AlB2 is the equilibrium phase for a rage of radii ratios and nanoparticles stoichiometry. These findings enable to better understand self-assembled binary nanocrystal superlattices formation and how to manipulate interparticle interactions in order to synthesize highly ordered structures.
84

Modification de la surface des nanocristaux de cellulose par estérification et polymérisation ATRP pour des applications avancées / Surface modification of cellulose nanocrystals by esterification and ATRP reactions for advanced applications

Zhang, Zhen 05 September 2017 (has links)
Dans cette thèse, la fonctionnalisation de surface de nanocristaux de cellulose (NCC) par estérification et polymérisation ATRP a été envisagée, dans le but de développer de nouveaux matériaux avancés. Une méthode pratique permettant de caractériser les polymères greffés en surface des NCC a d’abords été développée, à partir des analyses DLS, DSC et TGA. L’efficacité des méthodes SI-ATRP et SI-ARGET ATRP pour initier le greffage de polystyrène (PS) ou poly(4-vinylpyridine) (P4VP) à la surface des NCC a ensuite été comparée. Les nano-hybrides P4VP-g-NCC pH-responsifs, ont alors été utilisés pour stabiliser des nanoparticules d’or (AuNPs), dans le but de produire des catalyseurs recyclables. L’activité catalytique des matériaux Au@P4VP-g-CNC obtenus – testée avec la réduction du 4-nitrophenol – a été améliorée de manière significative par rapport aux AuNPs seuls. Des polymères UV-responsifs de poly(cinnamoyloxy ethyl methacrylate) (PCEM) ont également été greffés à la surface des NCC, pour produire des particules UV-absorbantes. Les nano-hybrides PCEM-g-CNC obtenus se sont avérés efficaces comme stabilisants UV/thermiques et agents de renforts dans les films PVC. Finalement, une méthode facile pour préparer des colloidosomes à partir d’émulsions de Pickering inverses stabilisées par des NCC modifiés par des groupes cinnamates a été proposée. Des colloidosomes aux parois robustes et permettant un relargage lent de molécules encapsulées comme la rhodamine B ou l’acide désoxyribonucléique fluorescent ont alors été obtenus. / In this thesis, the surface functionalization of cellulose nanocrystals (CNC) by esterification and ATRP reactions was envisaged, with the objective to develop novel advanced materials. A convenient method to characterize the polymers grafted on CNC by Si-ATRP has been first developed, based on DLS, DSC and TGA analyses. The efficiency of the SI-ATRP and SI-ARGET ATRP methods to initiate the grating of polystyrene (PS) or poly(4-vinylpyridine) (P4VP) at the CNC surface were then compared. The pH-responsive P4VP-g-CNC nano-hybrids were subsequently utilized to stabilize gold nanoparticles (AuNPs), in view of producing recyclable catalysts. The catalytic activity of the Au@P4VP-g-CNC material – tested with the reduction of 4-nitrophenol – was significantly improved compared with single AuNPs. UV-responsive poly(cinnamoyloxy ethyl methacrylate) (PCEM) polymers were also grafted on CNC, to produce particles with UV absorbing properties. The PCEM-g-CNC nano-hybrids obtained turned out to be efficient UV/thermal stabilizers and reinforcing agents in PVC films. Finally, a facile method to prepare colloidosomes from w/o inverse Pickering emulsions stabilized by cinnamate-modified CNC was proposed. Colloidosomes with robust shells and allowing the slow release of encapsulated molecules such as rhodamine B or fluorescent deoxyribonucleic acid were then obtained.
85

Nanocristaux, films et cellules photovoltaïques de Cu2ZnSn(SSe)4 par impression d'encres / CZTSSe nanocrystals, liquid processed films and solar cells

Foncrose, Vincent 05 November 2015 (has links)
Cu2ZnSnSSe4 (CZTSSe) est un matériau prometteur comme absorbant de cellules photovoltaïques. Le développement à grande échelle de cellules solaires CZTSSe est conditionné au développement de procédés bas coût et soucieux de l'environnement. Dans ce contexte, le développement de films de CZTSSe à partir d'encres tout aqueuses de nanoparticules de CZTS constitue un challenge intéressant. Une stratégie haute température en présence d'un agent texturant gaz a été définie pour synthétiser des nanocristaux de CZTS présentant des surfaces polaires. Notre procédé agent texturant gaz met en œuvre la formation simultanée de nucléis de CZTS et de bulles de gaz. Nous montrons que la production en conditions de forte sursaturation d'une très forte concentration de nucléis de CZTS en association à un très grand nombre de petites bulles de gaz représente les conditions optimales de formation de nanocristaux. Par une étude électrocinétique, une condensation régulée par la taille de l'ion alcalin est observée dans la série des alcalins Li+ < Na+ < K+ < Rb+ < Cs+, démontrant la stabilité chimique des surfaces de Cu2ZnSnS4 en dispersion toute aqueuse. Par mise en œuvre des dispersions tout aqueuses, nous avons réalisé l'acquisition de données de base permettant de produire une preuve de concept de la formation d'un film sans fissures. Un autre point important à considérer lors de l'utilisation de matières premières bas coût est l'élimination des impuretés inhibitrices de la croissance des grains. Un profil spécifique de recuit des films est proposé mettant en œuvre une purification haute température pour l'élimination du carbone. En effet, notre stratégie met en œuvre la décomposition des domaines amorphes en carbone sp2 qui est ultérieurement éliminé via la formation de CSe2 gazeux. Finalement, des cellules solaires ont été fabriquées avec succès à partir d'encres tout aqueuses avec des rendements de conversion préliminaires jusqu'à 2,6 %. / Recently more attention is devoted to Cu2ZnSnS4 (CZTSSe) for photovoltaic applications due to their non-toxic, earth-abundant components and good optoelectronic properties. Large scale fabrication of CZTSSe solar cells will rely on the development of low-cost and environmentally-friendly approach. In this context, development of CZTSSe films from all-aqueous CZTS nanocrystals inks represents an interesting challenge. A high temperature, gas-templating strategy has been defined to synthesize highly crystallized CZTS nanocrystals displaying polar surfaces. Our gas-templating process involves the simultaneous formation of CZTS nucleis and gas bubbles. We demonstrate that production of a high rate of small gas bubbles, as well as a high concentration of nucleis, depict optimal conditions for nanocrystal synthesis. By an electrokinetic investigation, a condensation regulation by the alkali ion size is observed in the alkali series Li+ < Na+ < K+ < Rb+ < Cs+, demonstrating the chemical stability of CZTS surfaces in aqueous basic dispersions. By using all-aqueous chalcogenide nanocrystals dispersions, we determined a critical cracking thickness of 250 nm and an average thickness of 100 nm to fabricate micron crack-free films using a multilayer procedure. Having in mind these results, we give the proof of concept of crack-free film formation from all aqueous CZTS nanocrystals inks. Another important consideration, when employing low-cost materials, is the removal of impurities, inhibitors of grain growth. A specific annealing profile is proposed involving a high temperature purification step in order to remove carbon. Indeed, our strategy involves the decomposition of amorphous domains into sp2 carbon which will be further removed via the CSe2gas formation. Finally, CZTSSe solar cells are successfully fabricated from all-aqueous CZTS inks with preliminary devices efficiencies up of 2.6%.
86

Photo-physics and applications of colloidal quantum dots

Stubbs, Stuart Kenneth January 2010 (has links)
The work presented in this thesis was submitted to The University of Manchester for the degree of Doctor of Philosophy in June 2010 by Stuart K Stubbs and is entitled “Photo-physics and applications of colloidal quantum dots”. In this thesis the results of spectroscopic studies on various colloidal quantum dots, particularly related to the measurement and characterisation of multiple exciton generation are presented. Research conducted with Nanoco Technologies Ltd. that involved the design and development of hybrid quantum dot organic light emitting diodes for use in flat panel display technology is also presented. Cadmium selenide (CdSe), indium phosphide (InP), and lead sulphide (PbS) type I and cadmium selenide/cadmium telluride type II colloidal quantum dots were characterised using steady state photoluminescence and absorption spectroscopy. The fluorescence lifetimes of the decay of single excitons was measured in these quantum dots using time correlated single photon counting. An ultrafast transient absorption spectrometer was designed, built, and used to observe the picosecond dynamics of the decay of multiexcitons. These absorption transients were analysed in order to extract the quantum efficiency of producing multiple excitons per absorbed photon. The characteristic signature for multiple exciton generation was first found in CdSe using a time correlated single photon counting set-up. Results from the transient absorption spectrometer demonstrated efficient multiple exciton generation in InP for the first time as well as in PbS, where the efficiency was found to agree with values obtained by other research groups. The absorption transients taken for the type II CdSe/CdTe type II quantum dots demonstrated some novel decay dynamics that could not be attributed to the generation of multiple excitons. Quantum dot organic light emitting diodes were fabricated using Nanoco Technologies high quality cadmium based quantum dots and were shown to demonstrate bright, colour saturated emission originating from the quantum dot layer only. Using quantum dots of different sizes and structures red, green and blue devices were made and shown to be appropriate both in terms of brightness and chromaticity for the use as the red, green and blue pixels of a flat panel display. Because heavy metals like cadmium are restricted or banned from commercial products in many countries, Nanoco Technologies heavy metal free quantum dots, made from InP, were also incorporated in devices. Devices are demonstrated that emit from the quantum dot layer only, albeit at a lower luminance and efficiency than that found in the cadmium containing devices. This was the first demonstration of a heavy metal free, hybrid quantum dot organic light emitting diode.
87

Investigation of Selected Optically-Active Nanosystems Fashioned using Ion Implantation

Mitchell, Lee 05 1900 (has links)
Opto-electronic semiconductor technology continues to grow at an accelerated pace, as the industry seeks to perfect devices such as light emitting diodes for purposes of optical processing and communication. A strive for greater efficiency with shrinking device dimensions, continually pushes the technology from both a design and materials aspect. Nanosystems such a quantum dots, also face new material engineering challenges as they enter the realm of quantum mechanics, with each system and material having markedly different electronic properties. Traditionally, the semiconductor industry has focused on materials such Group II-VI and III-V compounds as the basis material for future opto-electronic needs. Unfortunately, these material systems can be expensive and have difficulties integrating into current Si-based technology. The industry is reluctant to leave silicon due in part to silicon's high quality oxide, and the enormous amount of research invested into silicon based circuit fabrication. Although recently materials such as GaN are starting to dominate the electro-optical industry since a Si-based substitute has not been found. The purpose of the dissertation was to examine several promising systems that could be easily integrated into current Si-based technology and also be produced using simple inexpensive fabrication techniques such ion implantation. The development of optically active nano-sized precipitates in silica to form the active layer of an opto-electronic device was achieved with ion implantation and thermal annealing. Three material systems were investigated. These systems consisted of carbon, silicon and metal silicide based nanocrystals. The physical morphology and electronic properties were monitored using a variety of material characterization techniques. Rutherford backscattering/channeling were used to monitor elemental concentrations, photoluminescence was used to monitor the opto-electronic properties and transmission electron microscopy was used to study the intricate morphology of individual precipitates. The electronic properties and the morphology were studied as a function of implant dose, anneal times and anneal temperatures.
88

Production routes to tune cellulose nanocrystal properties and their performance at high temperatures

Vanderfleet, Oriana January 2021 (has links)
This thesis explores new and existing cellulose nanocrystal (CNC) production methods and evaluates their effects on CNC properties, with emphasis on their thermal performance. CNCs produced from industrial and lab-scale processes possess a wide range of surface chemistries, surface charge contents, as well as structural and morphological properties which affect their performance in CNC-based applications. Despite the broad range of available CNC properties, some challenges persist, particularly in the incorporation of CNCs into hydrophobic matrices, high brine liquid formulations, and high temperature applications. Herein, sulfated and carboxylated CNCs produced from large-scale processes were thoroughly characterized and key differences in their thermal performance and self-assembly and rheological behaviors were identified. Furthermore, an optimization study on phosphoric acid hydrolysis parameters and a novel surface modification method which deposits cellulose phosphate oligosaccharides onto CNC surfaces were proposed. The optimization study revealed that CNCs with high colloidal stability could not be produced with phosphoric acid alone; however, the weak acid hydrolysis allowed for precise control over CNC length. The deposition of oligosaccharides onto CNCs, however, resulted in highly colloidally stable CNCs possessing both phosphate and sulfate functional groups. Furthermore, this surface modification method altered CNC surface charge content, water interactions, and the viscosity of their aqueous suspensions. In these studies, however, changes in CNC thermal performance were difficult to elucidate. As such, to further understand the effects of CNC properties on both their dried and aqueous form thermal performance, a systematic comparison of sulfated, phosphated, and carboxylated CNCs was performed. CNCs were produced with new acid blend hydrolyses (i.e., combining sulfuric and phosphoric acid) as well as existing organic acid hydrolyses and oxidation routes. The combined effects of surface chemistry and counterion profoundly affected the thermal performance of dried CNCs, whereby sulfated and carboxylated CNCs were less thermally stable with proton and sodium counterions, respectively. Additionally, dried CNCs with more surface charge groups, shorter cellulose chains, and higher specific surface areas were found to be less resistant to high temperatures. As such, the new CNCs produced with acid blends exhibited superior thermal performance in their dried form due to their lower charge contents and longer cellulose chains. In their aqueous suspension form, carboxylated CNCs far outperformed both sulfated and phosphated CNCs at high temperatures; their suspensions remained colloidally stable at temperatures up to 150°C for extended time periods. Overall, this thesis equips CNC users and researchers with knowledge and tools to expand the usage of CNCs in commercial applications, particularly those which require high temperatures such as melt-processed polymer composites and oil and gas extraction fluids. / Thesis / Doctor of Philosophy (PhD) / This thesis contributes to a broader effort in replacing non-renewable and emissions intensive materials with sustainable alternatives such as nanocellulose. Nanocelluloses are nanometer-sized (where one nanometer is one billionth of a meter) cellulose particles manufactured from wood, cotton, or other natural resources. Nanocelluloses are made within Canada on a tonne-per-day scale; this value-added wood product presents an opportunity to refresh the Canadian forest industry. While nanocelluloses have many potential applications, their usage is somewhat limited by their inability to resist heat. This thesis examines changes in nanocellulose properties at high temperatures and evaluates how nanocellulose production methods affect their particle properties and thermal performance. New production methods are explored that increase nanocellulose resistance to heat, alter their dimensions, and change their interactions with water. Overall, this work aims to expand the usage of nanocellulose in commercial products such as coatings, plastics, industrial fluids, food products, and cosmetics (to name a few) by helping researchers select the right kind of nanocellulose for their intended applications.
89

Effects of Processing Parameters on Ultrasonic Nanocrystal Surface Modification (UNSM) of Surface Properties and Residual Stress In 300M Steels

Syed, Muhammad Shuja 02 June 2023 (has links)
No description available.
90

Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles

Monahan, Bradley Michael January 2014 (has links)
No description available.

Page generated in 0.0407 seconds