Spelling suggestions: "subject:"nanofibras dde carbono"" "subject:"nanofibras dde crbono""
1 |
Adsorção de atenolol em carvão activado, nanofibras e nanotubos de carbonoPires, Ana Isabel Ventura Fernandes January 2009 (has links)
Tese de mestrado integrado. Engenharia Química. Faculdade de Engenharia. Universidade do Porto, Facultad de Ciencias Químicas. Universidad Complutense de Madrid. 2009
|
2 |
Obtenção de nanofibras de carbono a partir do processo de eletrofiação / Carbon nanofibers obtained from the electrospinning processOliveira, Juliana Bovi de [UNESP] 08 March 2016 (has links)
Submitted by Juliana Bovi de Oliveira null (juliana_bovi@hotmail.com) on 2016-04-28T03:07:28Z
No. of bitstreams: 1
Dissertação de Mestrado - Juliana B Oliveira.pdf: 3628116 bytes, checksum: 38a7295f033a2a9bda4b4118db7acee0 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-02T11:57:44Z (GMT) No. of bitstreams: 1
oliveira_jb_me_guara.pdf: 3628116 bytes, checksum: 38a7295f033a2a9bda4b4118db7acee0 (MD5) / Made available in DSpace on 2016-05-02T11:57:44Z (GMT). No. of bitstreams: 1
oliveira_jb_me_guara.pdf: 3628116 bytes, checksum: 38a7295f033a2a9bda4b4118db7acee0 (MD5)
Previous issue date: 2016-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nos últimos anos, reforços constituídos de nanoestruturas em carbono, tais como nanotubos de carbono, fulerenos, grafenos e nanofibras de carbono, vêm sendo muito pesquisados devido às suas elevadas propriedades mecânicas, elétricas e térmicas. Uma vez que, as nanofibras de carbono consistem em um reforço contínuo (ou na forma de mantas) de elevada área superficial específica, associado ao fato de que estas podem ser obtidas a um baixo custo e em grandes quantidades, estas vêm se mostrando vantajosas quando comparadas aos tradicionais nanotubos de carbono. Assim, as nanofibras de carbono são ótimas candidatas para a obtenção de materiais avançados, podendo estas serem utilizadas como reforços em compósitos com diversas aplicações, tais como em implantes neurológicos e ortopédicos, como suportes de catalisadores, artefatos para aplicações aeroespaciais, dentre outras. Desta forma, o objetivo principal deste trabalho é a produção de nanofibras de carbono, empregando como precursora a manta de poliacrilonitrila (PAN) obtida pelo processo de eletrofiação via solução polimérica, com posterior utilização como reforço em compósitos poliméricos. Neste trabalho, uma manta de poliacrilonitrila com nanofibras de diâmetro de aproximadamente (375 ± 85) nm foi obtida por eletrofiação, sendo esta posteriormente carbonizada. A massa residual resultante do processo de carbonização foi de aproximadamente 38% em massa, com uma redução de 50% nos diâmetros das nanofibras após a queima das mantas de PAN, sendo que as mesmas apresentaram um rendimento de 25%. Na análise da estrutura cristalina do material carbonizado, verificou-se que o material apresentou uma desorganização estrutural. E a partir do ensaio de condutividade elétrica da manta carbonizada, concluiu-se que o material se comporta como um semi-condutor. O compósito de nanofibras de carbono/resina epóxi processado apresentou módulo de elasticidade de (3,79 ± 0,48) GPa, temperatura de transição vítrea (Tg) na faixa de 108,9 a 135,5°C, e um coeficiente de expansão térmica linear entre a faixa de 68 x 10-6/°C e 408 x 10-6/°C. / In recent years, reinforcement consisting of carbon nanostructures, such as carbon nanotubes, fullerenes, graphenes, and carbon nanofibers has been very researched due to its mechanical, electrical and thermal properties, besides having good thermal conductivity, mechanical resistance and high surface area. Since the carbon nanofibers comprise a continuous reinforcing with high specific surface area, associated with the fact that they can be obtained at a low cost and in large amounts, they have shown to be advantageous compared to traditional carbon nanotubes. Thus, the carbon nanofibers are excellent candidates in order to obtain advanced materials, and these can be used as reinforcements in composites with several applications such as for example, neurological and orthopedic implants, integrates in catalysts systems, devices for aerospace applications, among others. So, the main objective of this work is the processing of carbon nanofibers, using PAN as a precursor, obtained by the electrospinning process via polymer solution, with subsequent use for applications as reinforcement in polymer composites. In this work, PAN nanofibers were produced by electrospining with a diameter of approximately (375 ± 85) nm. The resulting residual weight after carbonization was approximately 38% in mass, with a diameters reduction of 50%, and the same showed a yield of 25%. From the analysis of the crystallinity structure of the carbonized material, it was found that the material presented a disordered structure. From the electrical conductivity results of the specimens, it was concluded that the material behaves as a semi-conductor. The epoxy resin/carbon nanofiber composite presented an elastic modulus value of (3.79 ± 0.48) GPa, a glass transition temperature (Tg) in the range from 108.9 to 135 5 ° C and a linear thermal expansion coefficient within the range of 68 x 10-6/°C and 408 x 10-6/°C.
|
3 |
Tratamientos de purificación y acondicionamiento de grafenos para el desarrollo de aplicacionesRodríguez Pastor, Iluminada 10 March 2014 (has links)
El grafeno es, por definición, una de las capas bidimensionales (2D) de espesor monoatómico que forman el grafito, cuando está aislada. Sus prometedoras propiedades (anómalo efecto Hall cuántico, alta movilidad portadora, alta concentración de portadores de carga, elevada resistencia mecánica) lo convierten en un foco de incesante estudio. Además del grafeno, existen diferentes materiales basados en grafeno, de los cuales el óxido de grafito o grafeno (G-O) es el que se obtiene con un método de síntesis que hasta el momento es el más viable industrialmente hablando [1, 2]. El G-O se obtiene por oxidación de un material grafítico y consiste en una capa de grafeno que contiene grupos funcionales oxigenados en el plano basal y en los bordes de plano. Los grupos funcionales y los defectos producidos hacen que el G-O pierda algunas de las propiedades características del grafeno, como su estructura electrónica conjugada, si bien algunas pueden recuperarse parcialmente mediante tratamientos de reducción, obteniéndose óxido de grafeno reducido, rG-O. Establecer un protocolo de síntesis adecuado requiere conocer en profundidad la estructura del óxido de grafeno, durante años estudiada, pero sobre la que aun existen dudas. En este trabajo se ha pretendido realizar un estudio exhaustivo de la estructura del óxido de grafeno, partiendo de la base de que dependerá de distintos factores relacionados con su síntesis, como el precursor o el método de oxidación. Este estudio ha consistido en probar cuatro métodos de obtención, que suponen el uso de distintos intercalantes, oxidantes y condiciones de reacción: método de Hummers-Offeman original (H2SO4/KMnO4/NaNO3) [3], de Hummers-Offeman modificado (H2SO4/KMnO4), de Brodie (HNO3/NaClO3) [4] y de Staudenmaier (HNO3/H2SO4/NaClO3) [5]. Las materias primas utilizadas para obtener G-O son nanofibras de carbono, tipo helical-ribbon [6], y grafito natural. También se ha estudiado la estructura real del óxido de grafeno en base a un modelo existente según el cual el G-O obtenido de la reacción es una estructura compleja formada por dos entes: las láminas de G-O y moléculas menores adheridas a ellas, debris [7]. Por último, se ha realizado la reducción de G-O mediante tratamientos basados en choques térmicos (a distintas temperaturas [8], en microondas [9] , y en presencia de disolventes [10]) o reactivos químicos (borohidruro de sodio [11], hidracina [12] y ácido hidriódico [13]). Mediante la producción por el método de Hummers-Offeman modificado se ha observado que partiendo de nanofibras de carbono se obtiene un mayor rendimiento de cristales de G-O monocapa que partiendo de grafito. Se da una mayor dificultad de incorporación de grupos oxigenados en el plano basal de las capas de grafito, es decir, es más efectiva la penetración de los reactivos en las nanofibras de carbono. Por otro lado, se ha demostrado la existencia de láminas de G-O y debris como estructura compleja, y que la formación de debris es mayor en el G-O procedente de nanofibras de carbono que en el procedente de grafito. En cuanto a los métodos de producción, el método de Hummers-Offeman, modificado u original, ha resultado ser el más efectivo en la formación de cristales de G-O de pocas capas. Se ha observado que el uso de NaNO3 en dicho método facilita la separación de capas y evita el posterior reapilamiento tras una exfoliación térmica, especialmente cuando se parte de grafito. Asimismo, este reactivo favorece la rotura de capas grafíticas y la penetración del KMnO4, dando lugar a una mayor formación de debris. Por último, se ha comprobado que los debris enmascaran la interpretación de los resultados de la reducción de G-O, pues durante los tratamientos térmicos o químicos, además de disminuir el contenido de oxígeno, se produce una eliminación de debris.
|
4 |
Matrices cementicias multifuncionales mediante adición de nanofibras de carbonoGalao Malo, Oscar 23 March 2012 (has links)
No description available.
|
5 |
Sistemas híbridos de polianilina y nanoestructuras de carbono para su aplicación en músculos artificiales y supercondensadoresGarcía Gallegos, Juan Carlos 25 July 2012 (has links)
La presente tesis es el resultado del estudio de la síntesis de compuestos de polianilina (PAni) con nanoestructuras de carbono para su aplicación en músculos artificiales y electrodos de supercondensadores. Las nanoestructuras que se emplearon en los compuestos de PAni son nanotubos de carbono multicapa (MWCNT), nanotubos de carbono multicapa dopados con nitrógeno (CNx-MWCNT), nanotubos de carbono multicapa funcionalizados con grupos oxigenados (COx-MWCNT) nanotubos de carbono multicapa exfoliados (exMWCNT), nanofibras de carbono de listones grafíticos helicoidales (HR-CNF) y óxido de grafeno (GO). Antes de abordar el trabajo experimental, se ha llevado a cabo una revisión bibliográfica acerca del estado del arte de la PAni, las nanoestructuras de carbono empleadas, los compuestos de PAni y la utilización de estos materiales como músculos artificiales y electrodos de supercondensadores. Más adelante se muestran y discuten los resultados experimentales de la síntesis de los compuestos de PAni mediante un método mecánico, al principio (utilizando únicamente MWCNTs y CNx como cargas), y después utilizando la polimerización interfacial in situ. Se analiza la dispersión de las cargas en la matriz polimérica así como su efecto en la conductividad eléctrica de los compuestos. En la sección correspondiente al empleo de los compuestos de PAni como músculos artificiales se describe la construcción de actuadores lineales (constituidos de polvos de compuestos aglomerados con acetato de polivinilo) y actuadores flexionantes bicapa (de compuestos procesados con N-metil-2-pirrolidona) así como el efecto de cada nanoestructura de carbono en el accionamiento de estos dispositivos. Además de los experimentos de accionamiento, a las películas de compuestos de PAni (procesada con NMP) se les realizó una caracterización termomecánica. En el capítulo siguiente se discuten los resultados experimentales sobre la utilización de películas de compuestos de PAni (procesadas con NMP) como electrodos de supercondensadores. Además de las pruebas de voltamperometría cíclica y de carga/descarga (típicas en aplicaciones electroquímicas) se realizó una caracterización termogravimétrica a los compuestos junto a una caracterización termomecánica. Se describe con detalle el efecto de las nanoestructuras de carbono en las propiedades electroquímicas y mecánicas de los electrodos de compuestos de PAni. Las conclusiones más importantes se compendian en un capítulo al final de esta memoria. La bibliografía empleada se lista al final de cada capítulo.
|
6 |
Efeitos de promotores no desempenho catalítico do cobalto suportado em nanofibras de carbono na síntese de Fischer-Tropsch / Promoter effects on catalytic performance of cobalt supported on carbon nanofibers in the Fischer-Tropsch synthesisCarvalho, André 06 October 2014 (has links)
A síntese de Fischer-Tropsch é um processo de conversão do gás de síntese (CO + H2) em hidrocarbonetos de cadeias longas. Os catalisadores clássicos para a hidrogenação do CO são, principalmente, o Fe e o Co suportados em diferentes óxidos. O desempenho catalítico do catalisador é influenciado pelo tamanho, dispersão e grau de redução das partículas metálicas. Estudos recentes mostram uma promissora aplicação de materiais à base de nanofibras de carbono na catálise heterogênea. Estes materiais apresentam algumas vantagens em relação aos suportes catalíticos tradicionais, tais como: uma baixa interação metal-suporte, elevada área superficial, ausência de poros fechados, alta condutividade térmica, elevada inércia química e hidrofobicidade. Neste trabalho foram fabricados suportes catalíticos macroscópicos à base de nanofibras de carbono, empregando o método de vapor deposição, a partir da decomposição do etano. Os catalisadores foram preparados pela impregnação incipiente do Co e de promotores na superfície do suporte. Foram empregados os metais nobres, Ir, Pt e Ru, como promotores catalíticos, com o objetivo de incrementar a redutibilidade e a atividade do catalisador. Todos os catalisadores foram caracterizados por Quimissorção de CO, Fisissorção de N2, Redução a Temperatura Programada (TPR), Espectroscopia Fotoeletrônica de Raios X (XPS) e Microscopia Eletrônica de Transmissão (MET). Os catalisadores foram, então, testados na síntese de Fischer-Tropsch, utilizando um reator de leito fixo e fluxo contínuo, com análise simultânea dos produtos gasosos e controle sistemático da temperatura, pressão e vazão dos reagentes. Finalmente, foram analisados os produtos líquidos obtidos na reação com objetivo de conhecer a influência dos promotores na seletividade dos hidrocarbonetos formados. / Fischer-Tropsch synthesis is a process of converting the syngas (CO + H2) to long-chain hydrocarbons. The traditional catalysts for the CO hydrogenation are Fe and Co supported on different oxides. Catalytic performance of the catalyst is influenced by size, dispersion and degree of reduction of metal particles. Recent studies show a promising application of materials based on carbon nanofibers in heterogeneous catalysis. These materials have some advantages compared to traditional catalyst supports, such as a low metal support interaction, high surface area, no closed pores, high thermal conductivity, high chemical resistance, and hydrophobicity. In this work, based on macroscopic carbon nanofiber catalyst supports have been manufactured by employing the method of chemical vapor deposition from ethane decomposition. Catalysts were prepared by incipient wetness impregnation of Co and promoters on the support surface. Noble metals, Ir, Pt and Ru were used as catalytic promoters, with the aim of increasing the reductibility and catalyst activity. All catalysts were characterized by CO Chemisorption, N2 Physisorption, Temperature Programmed Reduction (TPR), X-ray Photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM). The catalysts were then tested in the Fischer-Tropsch synthesis using a fixed bed reactor, continuous flow, with simultaneous analysis of gaseous products and systematic temperature control, pressure, and flow rate of the reactants. Finally, the liquid products obtained in the reaction were analyzed in order to determine the influence of promoters on the selectivity of hydrocarbons formed.
|
7 |
Inmovilización de catalizadores homogéneos en materiales de carbón nanoestructuradosGheorghiu, Constanta Cristina 19 July 2013 (has links)
No description available.
|
8 |
Efeitos de promotores no desempenho catalítico do cobalto suportado em nanofibras de carbono na síntese de Fischer-Tropsch / Promoter effects on catalytic performance of cobalt supported on carbon nanofibers in the Fischer-Tropsch synthesisAndré Carvalho 06 October 2014 (has links)
A síntese de Fischer-Tropsch é um processo de conversão do gás de síntese (CO + H2) em hidrocarbonetos de cadeias longas. Os catalisadores clássicos para a hidrogenação do CO são, principalmente, o Fe e o Co suportados em diferentes óxidos. O desempenho catalítico do catalisador é influenciado pelo tamanho, dispersão e grau de redução das partículas metálicas. Estudos recentes mostram uma promissora aplicação de materiais à base de nanofibras de carbono na catálise heterogênea. Estes materiais apresentam algumas vantagens em relação aos suportes catalíticos tradicionais, tais como: uma baixa interação metal-suporte, elevada área superficial, ausência de poros fechados, alta condutividade térmica, elevada inércia química e hidrofobicidade. Neste trabalho foram fabricados suportes catalíticos macroscópicos à base de nanofibras de carbono, empregando o método de vapor deposição, a partir da decomposição do etano. Os catalisadores foram preparados pela impregnação incipiente do Co e de promotores na superfície do suporte. Foram empregados os metais nobres, Ir, Pt e Ru, como promotores catalíticos, com o objetivo de incrementar a redutibilidade e a atividade do catalisador. Todos os catalisadores foram caracterizados por Quimissorção de CO, Fisissorção de N2, Redução a Temperatura Programada (TPR), Espectroscopia Fotoeletrônica de Raios X (XPS) e Microscopia Eletrônica de Transmissão (MET). Os catalisadores foram, então, testados na síntese de Fischer-Tropsch, utilizando um reator de leito fixo e fluxo contínuo, com análise simultânea dos produtos gasosos e controle sistemático da temperatura, pressão e vazão dos reagentes. Finalmente, foram analisados os produtos líquidos obtidos na reação com objetivo de conhecer a influência dos promotores na seletividade dos hidrocarbonetos formados. / Fischer-Tropsch synthesis is a process of converting the syngas (CO + H2) to long-chain hydrocarbons. The traditional catalysts for the CO hydrogenation are Fe and Co supported on different oxides. Catalytic performance of the catalyst is influenced by size, dispersion and degree of reduction of metal particles. Recent studies show a promising application of materials based on carbon nanofibers in heterogeneous catalysis. These materials have some advantages compared to traditional catalyst supports, such as a low metal support interaction, high surface area, no closed pores, high thermal conductivity, high chemical resistance, and hydrophobicity. In this work, based on macroscopic carbon nanofiber catalyst supports have been manufactured by employing the method of chemical vapor deposition from ethane decomposition. Catalysts were prepared by incipient wetness impregnation of Co and promoters on the support surface. Noble metals, Ir, Pt and Ru were used as catalytic promoters, with the aim of increasing the reductibility and catalyst activity. All catalysts were characterized by CO Chemisorption, N2 Physisorption, Temperature Programmed Reduction (TPR), X-ray Photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM). The catalysts were then tested in the Fischer-Tropsch synthesis using a fixed bed reactor, continuous flow, with simultaneous analysis of gaseous products and systematic temperature control, pressure, and flow rate of the reactants. Finally, the liquid products obtained in the reaction were analyzed in order to determine the influence of promoters on the selectivity of hydrocarbons formed.
|
Page generated in 0.0968 seconds