• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelle approche en thérapie anti-tumorale : développement de nanovecteurs du calcitriol ciblant les macrophages / Development of calcitriol nanovectors targeting macrophages as a new strategy for cancer treatment

Nicolas, Sabrina 21 November 2018 (has links)
Les macrophages (Mɸ) infiltrés dans les tumeurs orchestrent les différentes étapes du développement tumoral. De par leur capacité à internaliser les nanoparticules (NPs) et leur plasticité phénotypique, ils sont impliqués dans l’efficacité thérapeutique des actifs vectorisés par un rôle de réservoir de NPs ou une modulation de leur réponse envers les cellules néoplasiques. Le calcitriol, métabolite actif de la vitamine D, possède des activités à la fois anticancéreuse et immunomodulatrice. Sa vectorisation via des NPs est une approche thérapeutique intéressante pour potentialiser ses activités tout en limitant les effets secondaires s’opposant à son utilisation clinique dans le cadre de la chimiothérapie. Une étude de formulation a permis de développer des NPs à base d’acide poly(D,L)lactique et de triglycérides (ratio 1:2) d’une taille de 200 nm et présentant une libération prolongée du calcitriol. Des études in vitro menées sur les cellules de cancer du sein MCF-7 ont permis de mettre en évidence l’avantage d’une libération prolongée du calcitriol vis-à-vis de son activité antiproliférative aboutissant à une réduction de 65% de la viabilité cellulaire après 10 jours par rapport au contrôle, non observable avec le calcitriol libre. La participation active des M? à l’activité cytotoxique du calcitriol sur les lignées cellulaires de cancer du sein MCF-7 et de leucémie MV4-11 a aussi été mise en évidence par un modèle de co-culture in vitro. En effet, les NPs de calcitriol, après internalisation par les Mɸ, provoquent une action cytotoxique prolongée contre les cellules MCF-7 en co-culture au bout de 10 jours avec seulement 20% de cellules viables vs 70% en l’absence de Mɸ / Tumor associated macrophages (Mɸ) orchestrate the different stages of tumor development. They are able to internalize nanoparticles (NPs) and are known for their phenotypic plasticity, which make them interesting targets for cancer treatment through the storage of NPs or a modulation of their activity towards the neoplastic cells. Calcitriol, the active metabolite of vitamin D, exerts both anticancer and immunomodulatory activities. Its vectorization via NPs is an interesting therapeutic approach to potentiate its activities while limiting its side effects, which hamper its current clinical use in chemotherapy. We developed poly (D, L) lactic acid and triglyceride-based NPs (1:2 ratio) measuring 200 nm and exhibiting a sustained release of calcitriol. In vitro studies, performed on breast cancer cells (MCF-7), showed the advantages of a sustained release of calcitriol regarding its antiproliferative activity with a 65%-decrease in cell viability after 10 days compared to unexposed cells, while it was unobservable for free calcitriol. The implication of Mɸ in the cytotoxic activity of calcitriol towards MCF-7 cells and MV4-11 cells (leukemia) cells has been demonstrated using an in vitro co-culture model. Calcitriol-NPs showed a sustained cytotoxic activity towards MCF-7 cells in co-cultures after 10 days, through their uptake by Mɸ, with a decrease in cell viability of 80% vs 30% in mono-cultures
2

Développement de nanoparticules polymères pour le ciblage des macrophages et la modulation des leurs fonctions physiologiques / Polymeric nanoparticle development for targeting and modulating macrophage functions

Almouazen, Eyad 18 July 2013 (has links)
Les macrophages représentent une population de cellules immunes très présente dans certaines tumeurs malignes au sein desquelles ils vont jouer un rôle marqué dans la progression tumorale. Les macrophages représentent donc une cible thérapeutique intéressante dans le traitement de ces tumeurs infiltrées. Ce ciblage des macrophages peut être envisagé grâce à des vecteurs comme les systèmes d’encapsulation nanoparticulaires connus pour être facilement phagocytés par les macrophages après une administration locale ou parentérale. L’objectif de ces travaux de thèse a donc été de développer des nanoparticules polymères (NP) capable de cibler les macrophages infiltrés dans la tumeur et de libérer in situ un principe actif encapsulé au sein de ces NP. Les NP pourraient ainsi modifier les fonctions des macrophages ou encore permettre l’utilisation des macrophages comme une réserve d’actif anticancéreux. Après une étude de formulation, des NP à base d’acide poly(D,L)lactique de taille de 200 nm ont été sélectionnées. Ces NP présentent une bonne internalisation par les macrophages in vitro et un ciblage spécifique des macrophages infiltrés dans une tumeur de gliome humain, implantée chez des souris nudes, suite à une injection intratumorale de NP. Le premier actif modèle encapsulé est l’acide tout-trans rétinoïque (RA), molécule immuno-modulatrice pouvant modifier les fonctions macrophagiques. Les NP-RA peuvent encapsuler environ 90% d’actif et présentent un profil de libération prolongée du RA pendant 4 jours combiné à une amélioration de sa stabilité. De plus, ces NP-RA ont montré qu’elles pouvaient engendrer in vitro, une modification de l’expression de certains gènes des macrophages. Le deuxième type d’actif encapsulé lors de ces travaux est la vitamine D3 et ses dérivés (25-OH-vitamine D3 et 1,25-(OH)2-vitamine D3) possédant des propriétés anticancéreuses mais à l’origine de nombreux effets secondaires dus à un manque de spécificité d’action. L’objectif serait alors de mieux cibler les cellules tumorales grâce aux macrophages infiltrant ces tumeurs et d’éviter ainsi les hypercalcémies secondaires dues à l’administration de fortes doses de vitamine D3. Une étude in vitro sur une lignée cellulaire de cancer de sein (MCF-7) a permis de montrer l’avantage des NP pour prolonger et intensifier l’action antiproliférative des dérivés de vitamine D3 / Macrophages are the major leukocyte population present in tumors, so-called tumor-associated macrophages (TAM), promoting tumor growth. These macrophages could be an interesting therapeutic target for nanoparticulate delivery systems known to be easily recognized and phagocytosed by macrophages after local or parenteral administration. The aim of this work was to develop polymeric nanoparticles (NP) for targeting TAM. NP could modulate macrophage functions or use them as storage of anticancer drugs. After a formulation study, the 200 nm NP of poly(D, L) lactic acid were selected. These NP showed a good internalization by macrophages in vitro and specific targeting of TAM in human glioma tumor implanted in nude mice after intratumoral injection of NP. All-trans retinoic acid (RA, immuno-modulator) was first encapsulated with an encapsulation efficiency of 90%. RA-NP have a sustained release profile for 4 days and enhance stability of the RA. Changes in gene expression of RA-NP treated macrophages were observed in vitro. Secondly, active-metabolites of vitamin D3 (25-OH-vitamin D3 and 1,25-(OH)2-vitamin D3) were encapsulated for their anticancer properties. The aim was to target the tumor cells via TAM avoiding the hypercalcemia produced by high doses of vitamin D3. In vitro evaluations on breast cancer cell line (MCF-7) highlighted NP advantages to extend and enhance the antiproliferative action of vitamin D3 derivatives
3

Développement de nanoparticules polymères pour le ciblage des macrophages et la modulation des leurs fonctions physiologiques

Almouazen, Eyad 18 July 2013 (has links) (PDF)
Les macrophages représentent une population de cellules immunes très présente dans certaines tumeurs malignes au sein desquelles ils vont jouer un rôle marqué dans la progression tumorale. Les macrophages représentent donc une cible thérapeutique intéressante dans le traitement de ces tumeurs infiltrées. Ce ciblage des macrophages peut être envisagé grâce à des vecteurs comme les systèmes d'encapsulation nanoparticulaires connus pour être facilement phagocytés par les macrophages après une administration locale ou parentérale. L'objectif de ces travaux de thèse a donc été de développer des nanoparticules polymères (NP) capable de cibler les macrophages infiltrés dans la tumeur et de libérer in situ un principe actif encapsulé au sein de ces NP. Les NP pourraient ainsi modifier les fonctions des macrophages ou encore permettre l'utilisation des macrophages comme une réserve d'actif anticancéreux. Après une étude de formulation, des NP à base d'acide poly(D,L)lactique de taille de 200 nm ont été sélectionnées. Ces NP présentent une bonne internalisation par les macrophages in vitro et un ciblage spécifique des macrophages infiltrés dans une tumeur de gliome humain, implantée chez des souris nudes, suite à une injection intratumorale de NP. Le premier actif modèle encapsulé est l'acide tout-trans rétinoïque (RA), molécule immuno-modulatrice pouvant modifier les fonctions macrophagiques. Les NP-RA peuvent encapsuler environ 90% d'actif et présentent un profil de libération prolongée du RA pendant 4 jours combiné à une amélioration de sa stabilité. De plus, ces NP-RA ont montré qu'elles pouvaient engendrer in vitro, une modification de l'expression de certains gènes des macrophages. Le deuxième type d'actif encapsulé lors de ces travaux est la vitamine D3 et ses dérivés (25-OH-vitamine D3 et 1,25-(OH)2-vitamine D3) possédant des propriétés anticancéreuses mais à l'origine de nombreux effets secondaires dus à un manque de spécificité d'action. L'objectif serait alors de mieux cibler les cellules tumorales grâce aux macrophages infiltrant ces tumeurs et d'éviter ainsi les hypercalcémies secondaires dues à l'administration de fortes doses de vitamine D3. Une étude in vitro sur une lignée cellulaire de cancer de sein (MCF-7) a permis de montrer l'avantage des NP pour prolonger et intensifier l'action antiproliférative des dérivés de vitamine D3
4

Nouvelles applications des nanoparticules organiques : de la vectorisation d'un mélange d'actifs à travers la peau jusqu'au développement d'un test diagnostique in vitro de l'allergie aux parfums / New applications of organic nanoparticles : vestorisation of mix through the skin and developmentof in vitro assay for the diagnosis of fragrance allergy

Cortial, Angèle 30 January 2015 (has links)
Les nanoparticules (NPs) organiques représentent un outil majeur d'innovation en dermatologie. L'objectif de cette thèse a été de développer et d'optimiser des procédés d'encapsulation d'un mélange de molécules odorantes appelé fragrance mix I (FMI) dans des nanoparticules (NPs) de différentes natures: NPs polymères (poly-ε-caprolactone, PCL), ou NPs lipidiques solides (SLNs) (à base de vaseline, beurre de karité, cire de candelilla, triglycérides C10-18, ou palmitate de cétyle). Ces nouveaux systèmes ont alors été évalués pour la vectorisation de ce mélange à travers un explant de peau de porc, afin de modéliser la distribution des molécules composant le FMI dans les différentes assises cutanées. En parallèle, elles ont également été appliquées en tant que promoteurs de solubilisation du FMI pour le développement d'un nouveau test de diagnostic in vitro de l'allergie aux parfums. Nos résultats montrent que: (i) les NPs polymères, principalement anioniques, sont les plus adaptées pour promouvoir la pénétration transépidermique du FMI. Au contraire, les SLNs s'agglomèrent dans le stratum corneum, conduisant à une accumulation du FMI dans cette assise ; (ii) qu'au-delà du type de vecteur utilisé, la pénétration des molécules du FMI dans les couches les plus profondes de la peau dépend de leur coefficient de partage intrinsèque ; (iii) que les nanoparticules de PCL augmentent significativement la solubilisation du FMI dans les milieux de culture conventionnels et permettent ainsi une réactivation robuste des lymphocytes T spécifiques circulant chez des patients présentant une allergie au parfums. L'ensemble de ces résultats confirme donc tout le potentiel des NPs organiques pour le développement de futures stratégies de délivrance ciblée de plusieurs actifs dans les différents compartiments cutanés. Ces nouveaux vecteurs offrent en outre une alternative prometteuse pour améliorer le diagnostic de l'eczéma de contact induit par les parfums et plus généralement par des allergènes hydrophobes / The aim of this work was to develop and optimize methods for fragrance mix I (FMI) encapsulation into nanoparticles (NPs) of two types of nanoparticles (NPs) : polymeric NPs (poly-ε-caprolactone, PCL) and solid lipid NPs (SLNs) (prepared with petrolatum, shea butter, candelilla wax, C10-18 triglycerides, or cetyl palmitate). Then, these new NPss were evaluated as vectors through a pig skin to analyze the distribution of the FMI molecules in the different skin layers. In parallel, NPs have also been applied as solubilizers for the development of a new in vitro test for the diagnosis of fragrance allergy. Our results show that (i) NPs polymers, mainly anionic NPs, are the most suitable vectors to promote trans-epidermal penetration of fragrance. On the contrary, SLNs were found in the stratum corneum, leading to an accumulation of fragrance in this layer; (ii) whatever the type of NPs, the penetration of the FMI molecules in the deeper layers of the skin depends on their intrinsic partition coefficient; (iii) PCL-NPs significantly increase the FMI solubilization in conventional culture media and, allowing a robust reactivation of circulating specific T cells in patients with allergy to fragrances. All of these results confirm the potential of organic NPs for the development of future strategies (for the skin delivery of several actives in the different skin layers). These new vectors further offer a promising alternative to improve the diagnosis of contact dermatitis induced by fragrances and more generally by hydrophobic allergens
5

Development of microfluidic and low-energy emulsification methods for the production of monodisperse morphologically-complex nanocarriers : application to drug and contrast agent encapsulation / Développement de méthodes d’émulsification microfluidique et basse énergie pour la production de nanovecteurs monodisperses de morphologies complexes : application à l’encapsulation d’un principe actif ou d’un agent de contraste

Ding, Shukai 30 November 2016 (has links)
L’objectif de ce travail fut de développer et d’appliquer des technologies avancées de mélange et d’émulsification pour la préparation de nanovecteurs de morphologies complexes potentiellement utilisables en tant que produits pharmaceutiques. Premièrement, un procédé de nanoprécipitation assisté par micromélangeur fut utilisé pour obtenir et contrôler la taille de nanoparticules de PMMA chargées en Kétoprofène (100-200 nm). Combiné avec un appareil de séchage par pulvérisation, des nanoparticules sèches purent être obtenues dont les propriétés physico-chimiques furent proches de celles des particules non séchées. Ce microprocédé de nanoprécipitation permit également d’encapsuler des nanoparticules d’oxyde de fer (6 nm) dans des nanoparticules de PMMA de 200 nm avec une fraction massique de 60%. Pour augmenter la fraction solide de ces nanosuspensions et obtenir des particules sphériques de tailles plus petites (100 nm), une méthode de nanoémulsification basée sur un fort écoulement élongationnel fut employée. Deuxièmement, des émulsions et nanohydrogels doubles encapsulant un médicament hydrophile modèle dans leur cœur aqueux furent obtenus par couplage d’un microfluidiseur commercial pour l’obtention de l’émulsion primaire et d’une méthode d’émulsification basse énergie (émulsification spontanée) pour la double émulsification. La taille des nanovecteurs doubles a pu être variée grâce au rapport massique surfactant/huile (SOR) dans la gamme 80-80 nm. La colocation de deux sondes fluorescentes, placées dans le cœur et dans l’écorce, a pu être confirmée par microscopie confocale en fluorescence. La méthode d’émulsification spontanée fut également employée pour produire des nanolipogels (60 nm) chargées ou non de nanoparticules d’oxyde de fer et d’or (6 nm). / The aim of this work was to develop and apply advanced technologies in mixing and emulsification for the preparation of morphologically-complex nanocarriers for potential uses in pharmaceutics. Firstly, a micromixer- assisted nanoprecipitation process was used to get and to easily tune the size of Ketoprofen-loaded PMMA nanoparticles (100-200 nm). Combined with a commercial spray dryer, dry-state drug-loaded polymeric nanoparticles (NPs), which main physicochemical properties were close to those of non spray-dried NPs, were successfully produced. This nanoprecipitation microprocess also allowed encapsulating 6 nm iron oxide NPs into 200 nm PMMA nanoparticles with a weight ratio of 60%. To increase the solid content of the above nanosuspension and get spherical polymeric NPs of smaller sizes (100 nm), an elongational-flow nanoemulsification method was used. Secondly, double nanoemulsions/nanohydrogels encapsulating a hydrophilic model drug in the aqueous core droplets/hydrogel were obtained by the combination of a commercial microfluidizer for the primary emulsion and a low energy emulsification method (spontaneous emulsification) for the double emulsification. The size of the double nanocarriers was varied by means of the surfactant to oil ratio (SOR) in the range 80 to 180 nm. Colocation of two fluorescent probes located in the core and in the shell was confirmed by fluorescence confocal microscopy. The spontaneous emulsification method was also employed to produce nanolipogels whose size could be tuned down to 60 nm. These nanolipogels were also loaded with iron oxide nanoparticles (6 nm) or gold nanoparticles (6 nm).
6

Nano-objets hybrides et polymères sous irradiation / Hybrid and polymer nano-objects under irradiation

Paquirissamy, Aurélie 04 November 2016 (has links)
Les nano-objets hybrides ou polymères connaissent un intérêt grandissant depuis plusieurs années mais peu sont étudiés sous irradiation. Dans ce travail, différents nano-objets ont été synthétisés et étudiés pour comprendre leur stabilité face à des rayonnements ionisants. Nous avons étudié l’effet de l’irradiation sur des copolymères à blocs amphiphiles pouvant s’organiser en micelles dans l’eau. Les objets varient par la nature de leur polymère hydrophobe et leur sensibilité aux rayonnements ionisants. Dans un cas, des polyméthacrylates ont été copolymérisés par ATRP à partir d’un PEG macro-amorceur. Dans un autre cas, pour accentuer l’effet de l’irradiation, un polysulfone aliphatique plus radiosensible, a été synthétisé via une polyaddition thiol-ène. Après nanoprécipitation, les objets ont été caractérisés avant et après irradiation par des techniques de diffusion et de chromatographie. En parallèle, on s’est intéressés également à des nanoparticules métalliques connues pour augmenter l’effet de l’irradiation. Des nanoparticules d’or greffées de polymères ont été synthétisées par voie « grafting to » après synthèse de macro-ligands par polymérisation radicalaire contrôlée. Après une caractérisation fine des objets, l’effet de l’irradiation a été étudié à la fois sur la taille des objets et la masse des polymères afin de déterminer la nature des phénomènes mis en jeu. / Hybrid and polymer nano-objects have known a growing interest these last years but few are studied under irradiation. In the present work, different nano-objects have been synthetized and studied to understand their stability towards ionizing rays. We have studied the effect of irradiation onto amphiphilic bloc copolymer that form micelles in water. Objects were varied by the nature of their hydrophobic bloc and their sensibility to ionizing rays. First, methacrylates were copolymerized by ATRP with a PEG macro-initiator. Secondly, to improve radiation effect, a more radiosensitive polymer, a polyolefinsulfone, was synthetized by a thiol-ene polyaddition. After nanoprecipitation, objects were caracterized before and after irradiation by scattering and chromatography techniques. In parallel we also studied metallic nanoparticles well known for improving irradiation effect. Polymer-grafted gold nanoparticles were synthetized via a “grafting to” technique, after the synthesis of macro-ligands by controlled radical polymerization. After a precise characterization of these objects, irradiation effect has been studied via changes in size and polymer mass. This will permit to determine the nature of induced phenomena.
7

Mise au point de nanoparticules polymères pour l'administration parentérale d'agents anticancéreux hydrophobes

Gaucher, Geneviève 08 1900 (has links)
Plusieurs agents anticancéreux très puissants sont caractérisés par une solubilité aqueuse limitée et une toxicité systémique importante. Cette dernière serait liée d’une part à la solubilisation des agents anticancéreux à l’aide de surfactifs de bas poids moléculaire, connus pour leur toxicité intrinsèque, et d’autre part, par le manque de spécificité tissulaire des anticancéreux. Les vecteurs colloïdaux à base de polymères permettraient de résoudre certains défis liés à la formulation d’agents anticancéreux hydrophobes. D’abord, les polymères peuvent être sélectionnés afin de répondre à des critères précis de compatibilité, de dégradation et d’affinité pour le médicament à formuler. Ensuite, le fait d’encapsuler l’agent anticancéreux dans un vecteur peut améliorer son efficacité thérapeutique en favorisant son accumulation au niveau du tissu cible, i.e. la tumeur, et ainsi limiter sa distribution au niveau des tissus sains. Des travaux antérieurs menés au sein de notre laboratoire ont mené à la mise au point de micelles à base de poly(N-vinyl-pyrrolidone)-bloc-poly(D,L-lactide) (PVP-b-PDLLA) capables de solubiliser des agents anticancéreux faiblement hydrosolubles dont le PTX. Ce dernier est commercialisé sous le nom de Taxol® et formulé à l’aide du Crémophor EL (CrEL), un surfactif de bas poids moléculaire pouvant provoquer, entre autres, des réactions d’hypersensibilité sévères. Bien que les micelles de PVP-b-PDLLA chargées de PTX aient démontré une meilleure tolérance comparée au Taxol®, leur potentiel de ciblage tumoral et leur efficacité thérapeutique étaient similaires à la forme commerciale à doses égales. Ceci était possiblement dû au fait que les micelles étaient rapidement déstabilisées et ne pouvaient retenir leur cargo suite à leur administration intraveineuse. Nous avons donc décidé de poursuivre les travaux avec un autre type de vecteur, soit des nanoparticules, qui possèdent une stabilité intrinsèque supérieure aux micelles. L’objectif principal de cette thèse de doctorat était donc de mettre au point des nanoparticules polymères pour l’administration parentérale d’agents anticancéreux faiblement solubles dans l’eau. Les nanoparticules devaient permettre d’encapsuler des agents anticancéreux hydrophobes et de les libérer de manière contrôlée sur plusieurs jours. De plus, elles devaient démontrer un temps de circulation plasmatique prolongée afin de favoriser l’accumulation passive du médicament encapsulé au niveau de la tumeur. La première partie du travail visait à employer pour la première fois le copolymère amphiphile PVP-b-PDLLA comme émulsifiant dans la préparation de nanoparticules polymères. Ainsi, une méthode de fabrication des nanoparticules par émulsion huile-dans-eau a été appliquée afin de produire des nanoparticules à base de PDLLA de taille inférieure à 250 nm. Grâce aux propriétés lyoprotectrices de la couronne de PVP présente à la surface des nanoparticules, celles-ci pouvaient retrouver leur distribution de taille initiale après lyophilisation et redispersion en milieu aqueux. Deux anticancéreux hydrophobes, soit le PTX et l’étoposide (ETO), ont été encapsulés dans les nanoparticules et libérés de ces dernières de façon contrôlée sur plusieurs jours in vitro. Une procédure de « salting-out » a été appliquée afin d’améliorer le taux d’incorporation de l’ETO initialement faible étant donnée sa solubilité aqueuse légèrement supérieure à celle du PTX. Le second volet des travaux visait à comparer le PVP comme polymère de surface des nanoparticules au PEG, le polymère le plus fréquemment employé à cette fin en vectorisation. Par le biais d’études d’adsorption de protéines, de capture par les macrophages et de biodistribution chez le rat, nous avons établi une corrélation in vitro/in vivo démontrant que le PVP n’était pas un agent de surface aussi efficace que le PEG. Ainsi, malgré la présence du PVP à la surface des nanoparticules de PDLLA, ces dernières étaient rapidement éliminées de la circulation sanguine suite à leur capture par le système des phagocytes mononucléés. Par conséquent, dans le troisième volet de cette thèse, le PEG a été retenu comme agent de surface, tandis que différents polymères biodégradables de la famille des polyesters, certains synthétiques (PDLLA et copolymères d’acide lactique/acide glycolique), d’autres de source naturelle (poly(hydroxyalkanoates)(PHAs)), ont été investiguées comme matériaux formant le cœur des nanoparticules. Il en est ressorti que les propriétés physicochimiques des polyesters avaient un impact majeur sur l’efficacité d’encapsulation du PTX et son profil de libération des nanoparticules in vitro. Contrairement aux PHAs, les polymères synthétiques ont démontré des taux d’incorporation élevés ainsi qu’une libération contrôlée de leur cargo. Des études de pharmacocinétique et de biodistribution ont démontré que les nanoparticules de PDLLA dotées d’une couronne de PEG conféraient un temps de circulation plasmatique prolongé au PTX et favorisaient son accumulation tumorale. Les nanoparticules polymères représentent donc une alternative intéressante au Taxol®. / Many highly potent anticancer drugs are characterized by poor aqueous solubility and can impart significant systemic toxicity. This toxicity can be attributed in part to the solubilisation of these anticancer agents with low molecular weight surfactants that are known to cause serious biological side effects on their own. Moreover, following their intravenous (IV) injection, the anticancer agents distribute throughout the body, causing deleterious effects in healthy organs and tissues. Colloidal polymeric drug carriers have been investigated as a means to circumvent these drawbacks. First, polymeric materials can be tailored to meet specific requirements in terms of biocompatibility, biodegradability and affinity for the cargo molecule. Second, associating a drug to a carrier system can drastically alter its distribution throughout the body, enhancing its deposition at the target site, e.g. the tumour, while sparing healthy tissues, thus minimizing systemic toxicity. Previous work in our group has led to the design of block copolymer micelles based on poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA) that were shown to solubilise hydrophobic anticancer agents such as paclitaxel (PTX). PTX is commercially available as Taxol®, a Cremophor EL (CrEL)-based formulation. CrEL is a low molecular weight surfactant that has been linked to severe side effects including life-threatening hypersensitivity reactions. Although PTX-loaded PVP-b-PDLLA micelles have demonstrated much improved tolerability compared to Taxol®, they did not increase PTX tumoral concentrations and exhibited anticancer efficacy similar to Taxol® at equivalent dosage. This was attributed to rapid destabilisation of the micelles and release of their cargo following IV administration. We chose to pursue our work with a colloidal drug carrier that exhibits greater stability compared to block copolymer micelles, i.e. polymeric nanoparticles. The main objective of this project was to develop polymeric nanoparticles for the parenteral delivery of hydrophobic anticancer drugs. The nanoparticles had to meet certain requirements such as be able to encapsulate hydrophobic anticancer drugs and release them in a controlled fashion over several days. Furthermore, the nanoparticles should confer prolonged plasma residence times to the encapsulated drug and favour its passive accumulation at its intended site of action, i.e. the tumour. The first part of this work focussed on applying PVP-b-PDLLA for the first time as polymeric emulsifier for the preparation of PDLLA nanoparticles with appropriate mean diameters (250 nm) using an oil-in-water emulsion method. Two hydrophobic anticancer drugs, PTX and etoposide (ETO), were successfully incorporated into the nanoparticles. A salting-out method was applied to enhance the loading efficiency of ETO, which was initially low given its slightly higher aqueous solubility compared to PTX. Both drugs were released in a controlled fashion from the PDLLA nanoparticles in vitro. Because of the lyoprotective effect of PVP, the polymer corona allowed for the particles to be easily redispersed in aqueous media following lyophilisation. The second part of the thesis aimed at evaluating whether the PVP coating could confer “stealth” properties to the PDLLA nanoparticles. Our study provided direct comparison between PVP and PEG, the most widely employed surface agent in drug delivery. In vitro protein adsorption and phagocytosis studies corroborated the in vivo findings, which showed that PVP-coated nanoparticles were rapidly cleared from circulation following their uptake by the mononuclear phagocyte system. Hence, our results indicated that PVP as coating materiel is not as efficient as PEG in conferring “stealth” properties to polymeric nanoparticles. Consequently, in the last section of this thesis, PEG was selected as coating agent while various biodegradable polymers were investigated as core-forming materials. Both synthetic (PDLLA and lactide/glycolide copolymers) and natural (polyhydroxyalkanoates (PHAs)) polyesters were tested. Our results demonstrated that the physicochemical properties of the polyesters significantly influenced the loading efficiency and release kinetics of PTX. While nanoparticles based on synthetic polyesters exhibited high encapsulation levels and controlled PTX release in vitro, PHA-based nanoparticles exhibited immediate unloading of their cargo. Pharmacokinetic and biodistribution studies in rodents revealed that encapsulating PTX in PEG-coated PDLLA-based nanoparticles led to enhanced plasma residence time and tumour deposition of the drug compared to Taxol®. Polymeric nanoparticles thus represent an appealing alternative to Taxol®.
8

Mise au point de nanoparticules polymères pour l'administration parentérale d'agents anticancéreux hydrophobes

Gaucher, Geneviève 08 1900 (has links)
Plusieurs agents anticancéreux très puissants sont caractérisés par une solubilité aqueuse limitée et une toxicité systémique importante. Cette dernière serait liée d’une part à la solubilisation des agents anticancéreux à l’aide de surfactifs de bas poids moléculaire, connus pour leur toxicité intrinsèque, et d’autre part, par le manque de spécificité tissulaire des anticancéreux. Les vecteurs colloïdaux à base de polymères permettraient de résoudre certains défis liés à la formulation d’agents anticancéreux hydrophobes. D’abord, les polymères peuvent être sélectionnés afin de répondre à des critères précis de compatibilité, de dégradation et d’affinité pour le médicament à formuler. Ensuite, le fait d’encapsuler l’agent anticancéreux dans un vecteur peut améliorer son efficacité thérapeutique en favorisant son accumulation au niveau du tissu cible, i.e. la tumeur, et ainsi limiter sa distribution au niveau des tissus sains. Des travaux antérieurs menés au sein de notre laboratoire ont mené à la mise au point de micelles à base de poly(N-vinyl-pyrrolidone)-bloc-poly(D,L-lactide) (PVP-b-PDLLA) capables de solubiliser des agents anticancéreux faiblement hydrosolubles dont le PTX. Ce dernier est commercialisé sous le nom de Taxol® et formulé à l’aide du Crémophor EL (CrEL), un surfactif de bas poids moléculaire pouvant provoquer, entre autres, des réactions d’hypersensibilité sévères. Bien que les micelles de PVP-b-PDLLA chargées de PTX aient démontré une meilleure tolérance comparée au Taxol®, leur potentiel de ciblage tumoral et leur efficacité thérapeutique étaient similaires à la forme commerciale à doses égales. Ceci était possiblement dû au fait que les micelles étaient rapidement déstabilisées et ne pouvaient retenir leur cargo suite à leur administration intraveineuse. Nous avons donc décidé de poursuivre les travaux avec un autre type de vecteur, soit des nanoparticules, qui possèdent une stabilité intrinsèque supérieure aux micelles. L’objectif principal de cette thèse de doctorat était donc de mettre au point des nanoparticules polymères pour l’administration parentérale d’agents anticancéreux faiblement solubles dans l’eau. Les nanoparticules devaient permettre d’encapsuler des agents anticancéreux hydrophobes et de les libérer de manière contrôlée sur plusieurs jours. De plus, elles devaient démontrer un temps de circulation plasmatique prolongée afin de favoriser l’accumulation passive du médicament encapsulé au niveau de la tumeur. La première partie du travail visait à employer pour la première fois le copolymère amphiphile PVP-b-PDLLA comme émulsifiant dans la préparation de nanoparticules polymères. Ainsi, une méthode de fabrication des nanoparticules par émulsion huile-dans-eau a été appliquée afin de produire des nanoparticules à base de PDLLA de taille inférieure à 250 nm. Grâce aux propriétés lyoprotectrices de la couronne de PVP présente à la surface des nanoparticules, celles-ci pouvaient retrouver leur distribution de taille initiale après lyophilisation et redispersion en milieu aqueux. Deux anticancéreux hydrophobes, soit le PTX et l’étoposide (ETO), ont été encapsulés dans les nanoparticules et libérés de ces dernières de façon contrôlée sur plusieurs jours in vitro. Une procédure de « salting-out » a été appliquée afin d’améliorer le taux d’incorporation de l’ETO initialement faible étant donnée sa solubilité aqueuse légèrement supérieure à celle du PTX. Le second volet des travaux visait à comparer le PVP comme polymère de surface des nanoparticules au PEG, le polymère le plus fréquemment employé à cette fin en vectorisation. Par le biais d’études d’adsorption de protéines, de capture par les macrophages et de biodistribution chez le rat, nous avons établi une corrélation in vitro/in vivo démontrant que le PVP n’était pas un agent de surface aussi efficace que le PEG. Ainsi, malgré la présence du PVP à la surface des nanoparticules de PDLLA, ces dernières étaient rapidement éliminées de la circulation sanguine suite à leur capture par le système des phagocytes mononucléés. Par conséquent, dans le troisième volet de cette thèse, le PEG a été retenu comme agent de surface, tandis que différents polymères biodégradables de la famille des polyesters, certains synthétiques (PDLLA et copolymères d’acide lactique/acide glycolique), d’autres de source naturelle (poly(hydroxyalkanoates)(PHAs)), ont été investiguées comme matériaux formant le cœur des nanoparticules. Il en est ressorti que les propriétés physicochimiques des polyesters avaient un impact majeur sur l’efficacité d’encapsulation du PTX et son profil de libération des nanoparticules in vitro. Contrairement aux PHAs, les polymères synthétiques ont démontré des taux d’incorporation élevés ainsi qu’une libération contrôlée de leur cargo. Des études de pharmacocinétique et de biodistribution ont démontré que les nanoparticules de PDLLA dotées d’une couronne de PEG conféraient un temps de circulation plasmatique prolongé au PTX et favorisaient son accumulation tumorale. Les nanoparticules polymères représentent donc une alternative intéressante au Taxol®. / Many highly potent anticancer drugs are characterized by poor aqueous solubility and can impart significant systemic toxicity. This toxicity can be attributed in part to the solubilisation of these anticancer agents with low molecular weight surfactants that are known to cause serious biological side effects on their own. Moreover, following their intravenous (IV) injection, the anticancer agents distribute throughout the body, causing deleterious effects in healthy organs and tissues. Colloidal polymeric drug carriers have been investigated as a means to circumvent these drawbacks. First, polymeric materials can be tailored to meet specific requirements in terms of biocompatibility, biodegradability and affinity for the cargo molecule. Second, associating a drug to a carrier system can drastically alter its distribution throughout the body, enhancing its deposition at the target site, e.g. the tumour, while sparing healthy tissues, thus minimizing systemic toxicity. Previous work in our group has led to the design of block copolymer micelles based on poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA) that were shown to solubilise hydrophobic anticancer agents such as paclitaxel (PTX). PTX is commercially available as Taxol®, a Cremophor EL (CrEL)-based formulation. CrEL is a low molecular weight surfactant that has been linked to severe side effects including life-threatening hypersensitivity reactions. Although PTX-loaded PVP-b-PDLLA micelles have demonstrated much improved tolerability compared to Taxol®, they did not increase PTX tumoral concentrations and exhibited anticancer efficacy similar to Taxol® at equivalent dosage. This was attributed to rapid destabilisation of the micelles and release of their cargo following IV administration. We chose to pursue our work with a colloidal drug carrier that exhibits greater stability compared to block copolymer micelles, i.e. polymeric nanoparticles. The main objective of this project was to develop polymeric nanoparticles for the parenteral delivery of hydrophobic anticancer drugs. The nanoparticles had to meet certain requirements such as be able to encapsulate hydrophobic anticancer drugs and release them in a controlled fashion over several days. Furthermore, the nanoparticles should confer prolonged plasma residence times to the encapsulated drug and favour its passive accumulation at its intended site of action, i.e. the tumour. The first part of this work focussed on applying PVP-b-PDLLA for the first time as polymeric emulsifier for the preparation of PDLLA nanoparticles with appropriate mean diameters (250 nm) using an oil-in-water emulsion method. Two hydrophobic anticancer drugs, PTX and etoposide (ETO), were successfully incorporated into the nanoparticles. A salting-out method was applied to enhance the loading efficiency of ETO, which was initially low given its slightly higher aqueous solubility compared to PTX. Both drugs were released in a controlled fashion from the PDLLA nanoparticles in vitro. Because of the lyoprotective effect of PVP, the polymer corona allowed for the particles to be easily redispersed in aqueous media following lyophilisation. The second part of the thesis aimed at evaluating whether the PVP coating could confer “stealth” properties to the PDLLA nanoparticles. Our study provided direct comparison between PVP and PEG, the most widely employed surface agent in drug delivery. In vitro protein adsorption and phagocytosis studies corroborated the in vivo findings, which showed that PVP-coated nanoparticles were rapidly cleared from circulation following their uptake by the mononuclear phagocyte system. Hence, our results indicated that PVP as coating materiel is not as efficient as PEG in conferring “stealth” properties to polymeric nanoparticles. Consequently, in the last section of this thesis, PEG was selected as coating agent while various biodegradable polymers were investigated as core-forming materials. Both synthetic (PDLLA and lactide/glycolide copolymers) and natural (polyhydroxyalkanoates (PHAs)) polyesters were tested. Our results demonstrated that the physicochemical properties of the polyesters significantly influenced the loading efficiency and release kinetics of PTX. While nanoparticles based on synthetic polyesters exhibited high encapsulation levels and controlled PTX release in vitro, PHA-based nanoparticles exhibited immediate unloading of their cargo. Pharmacokinetic and biodistribution studies in rodents revealed that encapsulating PTX in PEG-coated PDLLA-based nanoparticles led to enhanced plasma residence time and tumour deposition of the drug compared to Taxol®. Polymeric nanoparticles thus represent an appealing alternative to Taxol®.

Page generated in 0.1402 seconds