• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 19
  • 16
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Weaving with Materials Native to the Texas Gulf Coast

Kerr, Thomas William 08 1900 (has links)
The present study explores some of the materials native to the Texas Gulf Coast between Corpus Christi and Beaumont relative to their adaptability to weaving. The problem is three-fold: first, to collect and identify the indigenous materials which might prove suitable for weaving; second, to determine the range of uses which each might serve in a weaving program; and third, to test further each selected specimen by making a sample into a finished woven product.
12

Mechanical and thermal properties of kenaf/polypropylene nonwoven composites

Hao, Ayou 26 August 2015 (has links)
The objectives of this research are to characterize the mechanical and thermal performance of natural fiber nonwoven composites and to predict the composite strength and long-term creep performance. Three natural fibers: kenaf, jute, and sunn hemp as potential candidates were compared in terms of physical, thermal and mechanical properties. In order to see the effects of fiber surface chemical treatment, sunn hemp fiber was treated with sodium hydroxide (NaOH) agent. Kenaf fiber was selected for the following study due to the higher specific modulus and the moderate price of kenaf fiber. After alkaline treatment, the moisture content, glass-transition temperature, and decomposition temperature of sunn hemp fiber increased but not significantly. The mechanical performance of kenaf/polypropylene nonwoven composites (KPNCs) in production of automotive interior parts was investigated. The uniaxial tensile, three-point bending, in-plane shearing, and Izod impact tests were performed to evaluate the composite mechanical properties. The thermal properties were evaluated using TGA, DSC, and DMA. An adhesive-free sandwich structure was found to have excellent impact resistance performance. Based on the evaluation of mechanical and vii thermal properties, manufacturing conditions of 230 C and 120 s for 6 mm thick sample and 230 C and 60 s for 3 mm thick samples were selected. The open-hole and pin filled-hole effects on the tensile properties of KPNCs in production of automotive interior parts were investigated. Three specimen width-to-hole diameter (W/D) ratios of 6, 3 and 2 were evaluated. A preliminary model by extended finite element method (XFEM) was established to simulate the composite crack propagation. Good agreement was found between experimental and simulation results. Mechanical properties of the KPNCs in terms of uniaxial tensile, open-hole tensile (OHT), and pin filled-hole tensile (FHT) were measured experimentally. By calculating the stress concentration factor Kt for brittle materials, the net section stress factor Kn for ductile materials, and the strength reduction factor Kr, it was found that KPNC was relatively ductile and insensitive to the notch. The strain rate effects on the tensile properties of KPNC were studied. The strain rate effects confirmed the time-dependence of KPNCs. Afterward, the creep behavior of KPNC and PP performed by DMA was investigated extensively. The linear viscoelastic limit (LVL) was found to be 1 MPa in this study. The long-term creep behavior of KPNC compared to virgin PP plastic was predicted using the time-temperature superposition (TTS) principle. Three-day creep tests were also conducted to verify the effectiveness of TTS prediction. It was found that the master curve for PP fit better with the three-day creep data than KPNC, due to the multiphase thermo-rheological complexity of KPNC. The creep recovery, stress effects and cyclic creep performance were also evaluated. Two popular creep models: the four-element Burgers model and the Findley power law model were used to simulate the creep behavior in this study. It was found that KPNC had higher creep resistance and better creep recoverability than virgin PP plastics. / text
13

Eco Friendly Composites Prepared from Lactic Acid Based Resin and Natural Fiber

Esmaeili, Nima, Javanshir, Shahrzad January 2014 (has links)
Lactic acid based thermoset were synthesised by reacting lactic acid with glycerol andfunctionalizing lactic acid branches by methacrylic anhydride. Resins with different chainlength were prepared and their thermo mechanical properties were examined through DMAanalysis and their molecular structures were analyzed by NMR method and their viscositywere investigated through rheometry analysis and three monomers were selected as the bestchain length. Degree of reaction in different reaction times was evaluated by a modifiedtitration method and bulk preparation of resin was performed by optimal process condition.DSC analysis was conducted in order to evaluate curing behaviour of resin with benzoylperoxide as cross-linking initiator. TGA analysis was performed to check thermo stability ofthe resin. Bio composites by viscose unidirectional and bidirectional knitted fabrics and alsonon woven viscose fiber with different fiber loads were prepared by ordinary hand layupimpregnation followed by compress moulding and their mechanical and thermo mechanicalproperties were characterized by tensile, flexural, charpy and DMA analysis and optimumfiber loads were identified for each fiber type. Ageing properties of prepared composites wereexamined by placing samples in climate chamber to simulate long time ageing and ageingexperiment was followed by tensile and flexural test to evaluate mechanical properties afterageing simulation. Composite`s swelling properties for water and some other solvents wereinvestigated and also their chemical resistance were evaluated by immersing them in 1M HCland KOH. The resin was also compared with a commercial oil based thermoset by preparingglass fiber reinforced composites and also effect of adding styrene to the resin were evaluated.Results of this work demonstrated that the novel synthesised have very high mechanical andthermo mechanical properties surpassing commercial oil based poly esters but ageingbehaviour is not very good however adding styrene can improve ageing properties. Also theresin is compatible with cellulosic natural fibers and forms strong composites. / Program: Masterutbildning i energi- och material
14

Mechanical characterization of DuraPulp by means of micromechanical modelling

Al-Darwash, Mustafa, Nuss, Emanuel January 2015 (has links)
Södra DuraPulp is a relatively new eco-composite, made from natural wood fibers and polylactic acid (PLA), which comes from corn starch. Until now, there are only few applications for DuraPulp, mainly in the area of design. To find new fields of application, more knowledge about its mechanical material properties are of great interest.This study deals with characterizing the mechanical properties of DuraPulp in an analytical way by means of micromechanical modelling and evaluation with help of Matlab. The mechanical properties for PLA were taken from scientific literature. Not all properties of the wood fibers could be found in literature (particularly Poisson’s ratios were unavailable). Therefore, they partly had to be assumed within reasonable boundaries. These assumptions are later validated regarding their influence on the final product.Figures and tables were used to present and compare the in- and out-of-plane E-Moduli, shear moduli and Poisson’s ratios of DuraPulp. The calculated in-plane E-Moduli were then compared to those obtained from an earlier study, where DuraPulp was tested in tension. The results showed that experimental and analytical values are very similar to each other. / Södra DuraPulp är en relativt ny eco-komposit, tillverkat av naturliga trä fibrer och polylactic syra som kommer från majsstärkelser. I dagsläget finns det få användningsområden för DuraPulp, huvudsakligen används det inom design. För att expandera användningsområdet behövs det mer kunskaper angående de mekaniska egenskaperna för materialet. Studien handlar om att karakterisera de mekaniska egenskaperna för DuraPulp på ett analytiskt sätt i form av mikro-mekanisk modellering och evaluering med hjälp av Matlab. De huvudsakliga mekaniska egenskaperna för PLA kunde hämtas från flera vetenskapliga källor, men de motsvarande mekaniska egenskaperna för fibrer kunde inte alla valideras. Delvis antogs dem i rimliga gränser och deras inverkan validerades med hjälp av en parameter studie.Figurer och tabeller användes för att presentera och jämföra in- och ut-plan E-Moduler, skjuvmoduler och tvärkontraktionstalen av DuraPulp. De beräknade in-plan E-modulerna för DuraPulp jämfördes med motsvarande E-moduler från en tidigare studie där DuraPulp genomgick dragtest. Resultatet visade att analytiska och experimentella värden överensstämmer bra med varandra.
15

Bio Stabilization for Geopolymer Enhancement and Mine Tailings Dust Control

Chen, Rui January 2014 (has links)
The first part of the thesis investigates the enhancement of fly ash-based geopolymer with alkali pretreated sweet sorghum fiber. The unconfined compression, splitting tensile and flexural tests were conducted to investigate the mechanical properties of geopolymer composite. The results indicate that the inclusion of sweet sorghum fiber slightly decreases the unconfined compressive strength (UCS), however, the splitting tensile and flexural strengths as well as the post-peak toughness increase with the fiber content up to 2% and then decrease thereafter. A durability test program containing 10 wet/dry cycles was performed to evaluate the long-term performance of the geopolymer composite related to wet/dry cycling. The results indicate that both the UCS and the splitting tensile strength of the geopolymer composite progressively decrease with the number of wet/dry cycles. The second part of the thesis investigates the utilization of biopolymers to stabilize MT for dust control. First, a fall cone method was adopted to evaluate the Atterberg limits and undrained shear strength of MT stabilized with biopolymers. The results indicate that the inclusion of biopolymers increases both the liquid limit and the undriained shear strength of MT. Two new equations are proposed for predicting the undrained shear strength of MT based on liquid limit and water content, and liquidity index. Second, an experimental program including moisture retention, wind tunnel and surface strength tests was performed to evaluate the effectiveness of biopolymer stabilization for dust control. The results indicate that biopolymers are effective in enhancing the moisture retention capacity, improving the dust resistance, and increasing the surface strength of MT. Third, a durability test program containing 10 wet/dry cycles was applied to MT samples treated with biopolymer solutions of different concentrations. The results show that the dust resistance of MT samples progressively decreases with the number of wet/dry cycles. Finally, experimental and numerical studies on the unconfined compressive strength (UCS) of MT stabilized with biopolymer were carried out. It is found that inclusion of biopolymer into MT favors the increase of adhesion between MT particles and thus the increase of the UCS of MT.
16

Optimisation d’un procédé d’élaboration d’un composite à base de fibres naturelles / Optimization of the obtention process of a natural fiber composite material

Gaffiot, Lauric 28 June 2017 (has links)
Les matériaux composites constituent aujourd’hui un domaine très dynamique tant au niveau de l’industrie que de la recherche. Dans ce cadre, les renforts d’origines naturelles représentent une alternative intéressante aux fibres synthétiques de par leurs propriétés mécaniques élevées, leur faible densité et leur caractère biosourcé, afin de répondre à l’accroissement des niveaux de performances ciblés ainsi qu’aux exigences économiques et écologiques actuelles.Ces travaux s’inscrivent dans un projet regroupant laboratoires de recherche, fournisseurs et end-users, visant à développer un matériau composite unidirectionnel structural à base de fibre de lin pour une application sport et loisirs. Ainsi, les objectifs initiaux incluent le développement de différents traitements chimiques des fibres, afin de les laver, d’homogénéiser leurs propriétés mécaniques et d’améliorer l’adhésion fibre-matrice. Une stratégie originale a pour cela été élaborée, basée sur la réactivité et les propriétés physico-chimiques d’un agent de couplage biosourcé. Ce produit a montré un potentiel prometteur d’additif de renforcement des matériaux cellulosiques, notamment à l’état humide. De plus, sa réactivité avec des molécules compatibilisantes a permis de le fonctionnaliser pour promouvoir l’adhésion fibre-matrice.Les caractérisations menées aux différentes échelles de la fibre de lin ont ensuite montré la pertinence de ces traitements, qui renforcent les interfaces fibre-matrice et les fibres techniques à l’état humide. Les études mécaniques ont cependant soulevé de nombreuses problématiques expérimentales, et ont démontré que les spécificités morphologiques de ces objets et leur caractère naturel ne permettaient pas l’exploitation directe des mesures dans le cadre d’un tel projet de développement. Les axes de recherche se sont alors avant tout focalisés sur l’étude des matériaux composites. Ainsi, plusieurs verrous structuraux ont pu être identifiés. La qualité de l’imprégnation de ces renforts naturels, qui peut être influencée par la formulation des traitements et la mise en œuvre, est déterminante dans le développement du matériau à cause de la morphologie multi-échelles des fibres. L’orientation des fibres au sein des plis unidirectionnels s’est également avéré être un paramètre prépondérant, étroitement lié à l’architecture des renforts et aux procédés de traitements industriels.Les développements menés à la fois sur les traitements et sur la structure des composites ont ainsi permis de doubler les propriétés mécaniques des systèmes initiaux pour atteindre un module de rigidité de 30 GPa et une contrainte ultime d’environ 370 MPa en traction tout en limitant grandement la perte de résistance après vieillissement dans l’eau et en garantissant une déformation en flexion répondant au cahier des charges. Les évolutions réalisées ne permettent pas pour le moment d’envisager l’industrialisation de ce matériau, mais vont permettre le prototypage de produits finis. / Nowadays, composite materials are a challenging and dynamic thematic for both industry and academic research. In this context, natural fibres are an interesting alternative to synthetic fibres thanks to their high mechanical properties, low density and biosourced origins in order to meet the requirements in terms of performance, costs and durability.This work take part into an industrial project that include research laboratories, suppliers and end-users. It aims at developing a unidirectional flax fibre composite material for sport and recreation application. The initial objectives of development focused on the surface optimization and the reinforcement, and the improvement of fibre-matrix adhesion. An original strategy has been set, based on the reactivity and the physico-chemical properties of métapériodate oxidized xyloglucan. This molecule has shown a promising effect of reinforcement on cellulosic materials, particularly in wet conditions. Besides, its reactivity with compatibilization agents allows different functionalization possibilities to increase fibre-matrix adhesion, encouraging its use as a coupling agent.The characterizations led on the different scales of flax fibre validated this strategy, as micro-mechanical tests showed adhesion improvement and mechanical properties of wet fibres had significantly increased. However, further mechanical investigations rose numerous experimental issues, and demonstrated that the specific morphology of these objects as well as their natural origins were major obstacles to measures exploitation in this kind of development project. So, the main research axis then focused on directly composite materials.Different structural problematics has been thus identified. Natural fibre impregnation, which can be influenced by treatments composition and elaboration process, has revealed itself has an important parameter linked to the multi-scale organization of flax. The fibre orientation in the unidirectional ply has been also identified as a key parameter that is affected by reinforcement architecture and industrial process of treatment.Those developments on treatments and composite structure led to a great increase of the material tensile properties to reach 30 GPa modulus and 370 MPa in strength, also improving its water ageing behaviour and its flexion ultimate strain. These promising enhancements are not sufficient in terms of overall mechanical performance and elaboration process to envisage an industrialization phase, but the prototyping of finished products will be realized.
17

Advances in Natural Fiber Cement Composites: A Material for the Sustainable Construction Industry

Silva, Flávio de Andrade, Mobasher, Barzin, Filho, Romildo Dias de Toledo 03 June 2009 (has links)
The need for economical, sustainable, safe, and secure shelter is an inherent global problem and numerous challenges remain in order to produce environmentally friendly construction products which are structurally safe and durable. The use of sisal, a natural fiber with enhanced mechanical performance, as reinforcement in a cement based matrix has shown to be a promising opportunity. This work addresses the development and advances of strain hardening cement composites using sisal fiber as reinforcement. Sisal fibers were used as a fabric to reinforce a multi-layer cementitious composite with a low content of Portland cement. Monotonic direct tensile tests were performed in the composites. The crack spacing during tension was measured by image analysis and correlated to strain. Local and global deformation was addressed. To demonstrate the high performance of the developed composite in long term applications, its resistance to tensile fatigue cycles was investigated. The composites were subjected to tensile fatigue load with maximum stresses ranging from 4 to 9.6 MPa at a frequency of 2 Hz. The composites did not fatigue below a maximum fatigue level of 6 MPa up to 106 cycles. Monotonic tensile testing was performed for composites that survived 106 cycles to determine its residual strength.
18

Natural Fibers and Fiberglass: A Technical and Economic Comparison

Zsiros, Justin Andrew 11 June 2010 (has links) (PDF)
Natural fibers have received attention in recent years because of their minimal environmental impact, reasonably good properties, and low cost. There is a wide variety of natural fibers suitable for composite applications, the most common of which is flax. Flax has advantages in tensile strength, light weight, and low cost over other natural fibers. As with other natural and synthetic fibers, flax is used to reinforce both thermoset and thermoplastic matrices. When flax is used in thermoplastic matrices, polypropylene and polyethylene are the main resins used. Although at first glance flax may seem to be a cheaper alternative to fiberglass, this may not necessarily be as advantageous as one would hope. A full economic valuation should be based on raw material costs and full processing costs. Although flax fibers used in composites are generally a waste product from linen flax, they require additional processing which can significantly reduce flax's economic advantage over glass. This paper attempts to place some measure of economic comparison coupled with property comparisons between natural (mainly flax) fibers and glass fibers. Our tests compare tensile, flexural, and drop impact properties, as well as heat sensitivity, and colorant acceptance.
19

Natūralaus pluošto įtaka polimerinių kompozitų savybėms / Natural fibre composites on the mechanical properties of polymer

Žymantas, Andrius 16 June 2014 (has links)
Tyrimo tikslas – įvertinti skirtingo natūralaus pluošto įtaką kompozicinės medžiagos polietilenas – pluoštas“ mechaninėms savybėms. Bandinių gamyba bei medžiagų mechaninių savybių tyrimai atlikti 2013/2014 m. Aleksandro Stulginskio universitete, Jėgos ir transporto mašinų inžinerijos instituto ir Žemės ūkio inžinerijos ir saugos instituto laboratorijose. Tyrinėjami kompozitai armuoti trimis skirtingai natūraliais pluoštais: kanapių, dilgėlių ir linų. Polietileno klijų kompozitas armuojamas keturiais kiekiais pluošto: 5 %,7 %, 10 % ir12 %. Tempimo ir lenkimo bandymai atlikti „Instron“ medžiagų savybių tyrimo stendu, nustatyta apkrova, kurią atlaiko bandinys ir deformacija. Atlikus lenkimo ir tempimo tyrimus nustatyta, kad geriausia armuojanti medžiaga yra kanapių pluoštas. Tempiant atlaikė didžiausią apkrovą – 753,7 N ir deformavosi 4 mm. Lenkiant kanapių pluoštu armuotas bandinys atlaikė 24,3 N apkrovą ir deformavosi 11,6 mm. / The aim - to evaluate the influence of different natural fiber composite polyethylene - fibers' mechanical properties. Specimen fabrication and mechanical properties of the materials were tested in 2013/2014 year. Alexander Stulginskio University, Power and Transport Machine Engineering and the Institute of Agricultural Engineering and Safety Institute laboratories. Reinforced composites are studied in three different natural fibers: hemp, ramie and flax. Polyethylene adhesive composite reinforced with four volumes of fiber: 5%, 7%, 10%, and 12%. Tensile and flexural tests were examined by using "Instron" material properties testing machine down load the sample and can withstand deformation. After bending and tensile tests showed that the best reinforcement material is hemp. Tensile withstood the maximum load - 753.7 N and deformed 4 mm. bending of hemp fiber reinforced sample withstood 24.3 N load and 11.6 mm.
20

Electromagnetic Shielding Properties of Iron Oxide Impregnated Kenaf Bast Fiberboard

Ding, Zhiguang 12 1900 (has links)
The electromagnetic shielding effectiveness of kenaf bast fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted to remove the lignin and extractives from the pores in fibers, and then magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a changing frequency from 9 GHz to 11 GHz. Using the scanning electron microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. The SEM images revealed that the composite’s EM shielding effectiveness was increased due to the adhesion of the iron oxide crystals to the kenaf fiber surfaces. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with magnetizing treat increased from 44.77 mJ/m2 to 46.07 mJ/m2, 48.78 mJ/m2 and 53.02 mJ/m2, respectively, while the modulus of elasticity (MOE) reduced from 2,875 MPa to 2,729 MPa, 2,487 MPa and 2,007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30-50% to 60-70%, 65-75% and 70-80%, respectively.

Page generated in 0.0458 seconds