• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 25
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 61
  • 43
  • 41
  • 35
  • 31
  • 22
  • 21
  • 21
  • 21
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Urban regeneration: Urban renewal through eco-systemic design

Cottle, Louis E 03 December 2003 (has links)
The systemic relationship between the human entity and its environment, under the constraint of its function, were used as the perfect example to design and create the systemic relationship of an urban regenerative building with its economical, environmental and social context in the Inner City of Pretoria. / Dissertation (MArch (Prof))--University of Pretoria, 2005. / Architecture / unrestricted
132

Naturlig Kylning av Transformator i Inomhusklimat / Natural Cooling of Transformer in Indoor Climate

Backeström, Evelina, Backeström, Saga January 2024 (has links)
Transformatorn har en viktig uppgift för att elsystemet ska fungera optimalt och det är därav väldigt viktigt att den inte går sönder genom att exempelvis överhettas. Från att transformatorn har varit placerad utomhus har det nu blivit allt vanligare att placera den i en omslutande byggnad, vilket påverkar effektiviteten för kylningen av transformatorn. Detta eftersom hastigheten på det passerande luftflödet kring transformatorn blir lägre vilket leder till att temperaturen i luften runtomkring ökar. I detta examensarbete undersöktes lufttemperaturen i en transformatorstation i Västernorrland, i syfte att se hur transformatorn klarar av de belastningar och utomhustemperaturer som den utsätts för. Detta för att kunna säkerställa att temperaturgränser och riktlinjer för interna och externa temperaturer för en transformator uppfylls. Transformatorn som användes i undersökningen har en maximal skenbar effekt på 16 MVA och använder sig av kylsystemet ONAN. Byggnaden runtomkring transformatorn har två ventilationsluckor på nedre långsidan, samt två ventilationsluckor på övre kortsidan.  Målet med undersökningen var att genomföra en teoretisk analys av hur kylningen i den valda transformatorstationen dimensioneras, där simuleringar även skulle göras i syfte att validera den teoretiska analysen. De belastningar som undersökts har utgått ifrån tillhandahållna data ifrån den högsta lasten under en vanlig sommar- och vinterdag. Ett framtida fall har även undersökts där lasten antas gå på märkeffekt under en längre tidsperiod samt under en väldigt varm sommardag, för att se hur hårt transformatorn kan belastas i extrema förhållanden utan att gränser och riktlinjer överskrids. Det framtida fallet har delats upp i två scenarier, extremfall 20 samt extremfall 30, där skillnaden är vilken temperatur in i transformatorstationen de har. Alternativa lösningar för ventilationsluckorna har även studerats, gällande placering på väggar, storlekar samt gallers modell. Matematiska beräkningsmodeller för bland annat luftflödet, stationstemperaturen samt lindningsoch oljetemperaturer utvecklades fram under arbetet gång, vilka samlades i en Excel beräkningsmall. Simuleringar av byggnaden och transformatorn gjordes i COMSOL Multiphysics, där både 2D och 3D modeller undersöktes i syfte att dels analysera värmespridningen i oljan, dels den naturliga ventilationen. Utifrån de matematiska beräkningsmodellerna framgick det att vinterfallet körde på ca 49% belastning, medan sommarfallet körde på ca 10% belastning. Dessa båda fallen klarade alla gränser och riktlinjer kring externa och interna temperaturer för alla areastorlekar, placeringar och gallersmodeller som testades. I extremfallen uppfylldes de interna temperaturökningsgränserna, men extremfall 30 klarade inte den externa temperaturgränsen i något simuleringstest. Skulle ett extremfall 30 i framtiden inträffa, bör fläktar vid radiatorerna eller ventilationsluckorna övervägas, alternativt en större lucköppning där det enligt framräknade resultat behövs en förstoring av öppningarna på 57%. Ytterligare ett alternativ skulle kunna vara att placera ventilationsluckorna i taket, då detta visade sig ge bästa möjliga kylning av transformatorn i simuleringarna. Detta examensarbete skulle kunna användas som en grund inför framtida undersökningar och den framarbetade Excel beräkningsmallen kan användas som riktlinje vid dimensionering av inomhustransformatorstationer. / The transformer plays a crucial role for the electrical system to function optimally, making its reliability vital to prevent issues such as overheating. Traditionally, the transformer has been positioned outdoors. Nowadays it has become increasingly common to house transformers in enclosed buildings, which affects the cooling efficiency of the transformer. This enclosure reduces the speed of airflow around the transformer, subsequently raising the ambient air temperature. In this thesis, the air temperature in a transformer station in Västernorrland was investigated, to assess how the transformer withstands the loads and external temperatures it encounters. This to ensure that requirements and guidelines for internal and external temperatures for the transformer are met. The transformer used in the study has a maximum apparent power of 16 MVA and uses the ONAN cooling system. The enclosing building is equipped with two ventilation hatches on the longer lower side and two on the shorter upper side.  The aim of the investigation was to conduct a theoretical analysis of the cooling system’s dimensions at the selected substation, complemented by simulations to validate the theoretical findings. The loads investigated have been based on the data provided from the highest load during a normal summer and winter day. Additionally, a future scenario was explored where the transformer operates at rated power for extended periods during a very hot summer day to determine the maximum load the transformer can handle under extreme conditions without breaching the set requirements and guidelines. The future case has been divided into two scenarios, extreme case 20 and extreme case 30, where the difference is what temperature into the substation they have. Alternative design solutions for the ventilation hatches have also been studied, regarding placement on walls, sizes, and fire damper model. Mathematical calculation models for, among other things, the air flow, station temperature, winding- and oil temperatures were developed during the project and compiled into an Excel calculation template. Simulations of the building and the transformer were made in COMSOL Multiphysics, analysing both 2D and 3D models with the aim of studying the heat spread in the oil and the natural ventilation.  The mathematical models showed that the winter scenario operated at approximately 49% load, while the summer scenario operated at about 10% load. These two cases passed all requirements and guidelines regarding external and internal temperatures for all tested hatch sizes and locations. In the extreme cases, the internal temperature rise requirement was met. However, extreme 30 failed to meet the external temperature requirement in any simulation test. Should an extreme case 30 occur in the future, fans at the cooling fins or ventilation hatches may be necessary, or potentially enlarging the hatch openings by 57% as suggested by the calculations. Another alternative could be placing the ventilation hatches on the roof, as this arrangement provided optimal cooling in the simulations. This thesis could be used as a basis for future investigations and the developed Excel calculation template can be used as a guideline when dimensioning indoor transformer stations.
133

Impacto da altura de edifícios nas condições de ventilação natural do meio urbano / Impact of building height on the natural ventilation conditions in the urban environment

Prata, Alessandra Rodrigues 13 December 2005 (has links)
Esta pesquisa teve como objetivo verificar a alteração do campo de vento na área de estudo, decorrente da alteração de gabarito quanto à ventilação natural, e avaliar o impacto nas condições de conforto dos pedestres. A verificação das condições de ventilação natural nas cidades, com estudos em modelos, auxilia na elaboração de projetos arquitetônicos, ou de planejamento, possibilitando uma análise da influência do efeito do vento em determinados locais da área em análise. O objeto de estudo da tese é a relação entre a alteração de gabarito (altura dos edifícios) e as mudanças ocasionadas na ventilação natural em espaços urbanos na área entre o Canal 1 e 2 (Bairro Pompéia) na cidade de Santos/SP. Partiu-se da hipótese que a ventilação natural em áreas urbanas depende da altura dos edifícios, da direção e velocidade dos ventos. Foi utilizado método experimental com simulação da configuração urbana em túnel de vento, medidas in loco para a verificação das condições climáticas, simulação com software CFD (Computer Fluids Dynamics) e a aplicação de um índice de neutralidade térmica. Trata-se de uma tese de caráter experimental e exploratório, onde os métodos utilizados demonstraram ser aplicáveis para o entendimento das condições de ventilação natural em meio urbano. / The objective of this research is to verify alterations of the wind pattern in the study area, stemming from changes to the grids natural ventilation, and evaluate the impact to the pedestrians comfort conditions. The verification of natural ventilation conditions in cities, with the study of models, aids in the creation of architectural or planning - designs, enabling an analysis of the influence of the effects of wind in certain points of the area in study. This thesis object of study is the relation between changes to the framework (building height) and changes to the natural ventilation in urban environments in the area between Canal 1 and 2 (Bairro Pompéia), in the city of Santos/SP. The hypothesis is that natural ventilation in urban areas depends on the height of buildings, direction and velocity of winds. The study involved an experimental method, with wind-tunnel simulation of the urban grid, in loco measurements of the climate conditions, simulation with CFD software and application of a thermal neutrality index. This thesis is experimental and exploratory in its character, and the methods used proved applicable to the understanding of the natural ventilation conditions in an urban environment.
134

Impacto da altura de edifícios nas condições de ventilação natural do meio urbano / Impact of building height on the natural ventilation conditions in the urban environment

Alessandra Rodrigues Prata 13 December 2005 (has links)
Esta pesquisa teve como objetivo verificar a alteração do campo de vento na área de estudo, decorrente da alteração de gabarito quanto à ventilação natural, e avaliar o impacto nas condições de conforto dos pedestres. A verificação das condições de ventilação natural nas cidades, com estudos em modelos, auxilia na elaboração de projetos arquitetônicos, ou de planejamento, possibilitando uma análise da influência do efeito do vento em determinados locais da área em análise. O objeto de estudo da tese é a relação entre a alteração de gabarito (altura dos edifícios) e as mudanças ocasionadas na ventilação natural em espaços urbanos na área entre o Canal 1 e 2 (Bairro Pompéia) na cidade de Santos/SP. Partiu-se da hipótese que a ventilação natural em áreas urbanas depende da altura dos edifícios, da direção e velocidade dos ventos. Foi utilizado método experimental com simulação da configuração urbana em túnel de vento, medidas in loco para a verificação das condições climáticas, simulação com software CFD (Computer Fluids Dynamics) e a aplicação de um índice de neutralidade térmica. Trata-se de uma tese de caráter experimental e exploratório, onde os métodos utilizados demonstraram ser aplicáveis para o entendimento das condições de ventilação natural em meio urbano. / The objective of this research is to verify alterations of the wind pattern in the study area, stemming from changes to the grids natural ventilation, and evaluate the impact to the pedestrians comfort conditions. The verification of natural ventilation conditions in cities, with the study of models, aids in the creation of architectural or planning - designs, enabling an analysis of the influence of the effects of wind in certain points of the area in study. This thesis object of study is the relation between changes to the framework (building height) and changes to the natural ventilation in urban environments in the area between Canal 1 and 2 (Bairro Pompéia), in the city of Santos/SP. The hypothesis is that natural ventilation in urban areas depends on the height of buildings, direction and velocity of winds. The study involved an experimental method, with wind-tunnel simulation of the urban grid, in loco measurements of the climate conditions, simulation with CFD software and application of a thermal neutrality index. This thesis is experimental and exploratory in its character, and the methods used proved applicable to the understanding of the natural ventilation conditions in an urban environment.
135

Étude du rafraîchissement passif de bâtiments commerciaux ou industriels / Passive cooling study of low-rise commercial or industrial building

Lapisa, Remon 16 December 2015 (has links)
Les bâtiments commerciaux et industriels présentent une part non négligeable de la demande énergétique. L’objectif de ce travail de thèse est d’étudier par des simulations numériques, le comportement thermoaéraulique des bâtiments de grand volume à usage commercial ou industriel et d’améliorer leurs performances afin de réduire leurs consommations énergétiques tout en assurant le confort thermique des occupants. La première partie de l’étude consiste à définir et à évaluer les paramètres d’enveloppe et de ventilation qui affectent la consommation d’énergie et le confort thermique de ce type de bâtiment. À travers des modèles développés (multizone et zonal) sur un bâtiment « générique », nous présentons l’impact des paramètres les plus importants (orientation du bâtiment, isolation thermique de l’enveloppe, propriétés radiatives de la toiture, sol, inertie thermique interne, diffusion de l’air…) sur la consommation énergétique et le confort. Ces paramètres sont déterminants surtout dans la conception de la toiture et du plancher de par leur influence sur les performances énergétiques du bâtiment étudié. Cette modélisation thermoaéraulique est ensuite appliquée à un bureau-entrepôt commercial existant. L’exploitation du modèle, dont les résultats sont confrontés aux mesures, et des études paramétriques permettent de démontrer l’efficacité de stratégies de ventilation naturelle nocturne. Dans la deuxième partie, nous évaluons certaines solutions de rafraîchissement passif (isolation thermique, ventilation naturelle nocturne, revêtement de toiture « cool roof ») permettant de maintenir le confort thermique en hiver aussi bien qu’en été tout en minimisant la consommation énergétique. Enfin, une étude d’optimisation nous permet de déterminer les paramètres optimums en fonction des conditions climatiques et des deux objectifs de confort et de performance énergétique. Ce travail ouvre de nombreuses perspectives sur la méthodologie de conception des enveloppes et l’adaptation du fonctionnement des installations de ventilation pour le rafraîchissement passif des bâtiments. / Commercial and industrial buildings represent a significant part of total energy demand. The objective of this thesis is to study the thermal behavior and airflows of commercial or industrial buildings (low-rise and large volume) by numerical simulations, to improve their thermal performance in order to reduce their energy consumption while maintaining thermal comfort of the occupants. The first part of this study consists in identifying and evaluating the keys factors that affect the energy demand and thermal comfort of these buildings. Using the developed models (multizone and zonal), we present the impact of the most important parameters (building orientation, thermal insulation, radiative properties of the roof, soil, internal thermal inertia, air diffusion…) on energy consumption and thermal comfort. We have identified here that the main influencing parameters can be found in the design of the roof and the ground floor considering the energy performance of the studied building. The developed model is then applied to a real commercial building. Results showed that the predictions are in good agreement with the measurements and that night-time natural ventilation can be an efficient passive cooling technique to avoid overheating in summer. In the second part, we evaluate the efficiency of different passive cooling techniques (thermal insulation, night-time natural ventilation, cool roof…) applied to ensure the thermal comfort in winter as well as in summer while minimizing the energy consumption. Finally, an optimization study is proposed to determine the optimal set of parameters for both objective functions considering the passive cooling techniques and the energy demand according to different climatic zones.
136

Natural Ventilation and Air Infiltration in Large Single‑Zone Buildings : Measurements and Modelling with Reference to Historical Churches

Hayati, Abolfazl January 2017 (has links)
Natural ventilation is the dominating ventilation process in ancient buildings like churches, and also in most domestic buildings in Sweden and in the rest of the world. These buildings are naturally ventilated via air infiltration and airing. Air infiltration is the airflow through adventitious leakages in the building envelope, while airing is the intentional air exchange through large openings like windows and doors. Airing can in turn be performed either as single-sided (one opening) or as cross flow ventilation (two or more openings located on different walls). The total air exchange affects heating energy and indoor air quality. In churches, deposition of airborne particles causes gradual soiling of indoor surfaces, including paintings and other pieces of art. Significant amounts of particles are emitted from visitors and from candles, incense, etc. Temporary airing is likely to reduce this problem, and it can also be used to adjust the indoor temperature. The present study investigates mechanisms and prediction models regarding air infiltration and open-door airing by means of field measurements, experiments in wind tunnel and computer modelling. In natural ventilation, both air infiltration and airing share the same driving forces, i.e. wind and buoyancy (indoor-outdoor temperature differences). Both forces turn out to be difficult to predict, especially wind induced flows and the combination of buoyancy and wind. In the first part of the present study, two of the most established models for predicting air infiltration rate in buildings were evaluated against measurements in three historical stone churches in Sweden. A correction factor of 0.8 is introduced to adjust one of the studied models (which yielded better predictions) for fitting the large single zones like churches. Based on field investigation and IR-thermography inspections, a detailed numerical model was developed for prediction of air infiltration, where input data included assessed level of the neutral pressure level (NPL). The model functionality was validated against measurements in one of the case studies, indicating reasonable prediction capability. It is suggested that this model is further developed by including a more systematic calibration system for more building types and with different weather conditions. Regarding airing, both single-sided and cross flow rates through the porches of various church buildings were measured with tracer gas method, as well as through direct measurements of the air velocity in a porch opening. Measurement results were compared with predictions attained from four previously developed models for single‑sided ventilation. Models that include terms for wind turbulence were found to yield somewhat better predictions. According to the performed measurements, the magnitude of one hour single-sided open-door airing in a church typically yields around 50% air exchange, indicating that this is a workable ventilation method, also for such large building volumes. A practical kind of diagram to facilitate estimation of suitable airing period is presented. The ability of the IDA Indoor Climate and Energy (IDA-ICE) computer program to predict airing rates was examined by comparing with field measurements in a church. The programs’ predictions of single-sided airflows through an open door of the church were of the same magnitude as the measured ones; however, the effect of wind direction was not well captured by the program, indicating a development potential. Finally, wind driven air flows through porch type openings of a church model were studied in a wind tunnel, where the airing rates were measured by tracer gas. At single-sided airing, a higher flow rate was observed at higher wind turbulence and when the opening was on the windward side of the building, in agreement with field measurements. Further, the airing rate was on the order of 15 times higher at cross flow than at single-sided airing. Realization of cross flow thus seems highly recommendable for enhanced airing. Calibration constants for a simple equation for wind driven flow through porches are presented. The measurements also indicate that advection through turbulence is a more important airing mechanism than pumping.   The present work adds knowledge particularly to the issues of air infiltration and airing through doors, in large single zones. The results can be applicable also to other kinds of large single-zone buildings, like industry halls, atriums and sports halls. / Naturlig ventilation är den dominerande ventilationsprocessen i äldre byggnader såsom kyrkor, och även i de flesta småhus i Sverige och övriga delar av världen. Luftinfiltration och vädring utgör viktiga komponenter i naturlig ventilation, där luftinfiltration är luftflöde genom oavsiktliga läckage i byggnadsskalet, medan vädring är avsiktligt luftutbyte genom stora öppningar såsom fönster och dörrar/portar. Vädring kan i sin tur ske ensidigt (genom en öppning) eller som tvärdrag (genom två eller flera öppningar belägna på olika ytterväggar). Det totala luftutbytet påverkar värmeförluster och inomhusluftens kvalité. I kyrkor orsakar avsättning av luftpartiklar en gradvis nedsmutsning av invändiga ytor, inklusive väggmålningar och andra konstföremål. Betydande mängder partiklar avges från besökare, tända ljus, rökelse, o.d. Tillfällig vädring kan minska detta problem, men även användas för att justera innetemperaturen. Föreliggande studie analyserar mekanismer och predikteringsmodeller gällande luftinfiltration och dörrvädring genom fältmätningar, vindtunnelförsök och datorsimuleringar. Luftinfiltration och vädring har samma drivkrafter, d.v.s. vind och termik (inne‑ute temperaturskillnader). Båda dessa drivkrafter är svåra att predicera, särskilt vindinducerade flöden och kombinationen av termik och vind. Två av de mest etablerade modellerna för luftinfiltrationsprediktering i byggnader har utvärderats via mätningar i tre kulturhistoriska stenkyrkor i Sverige. En korrigeringsfaktor av 0,8 föreslås för bättre prediktion av den ena modellen (som gav bäst resultat) gällande höga en-zonsbyggnader såsom kyrkor. En detaljerad numerisk modell är utvecklad för luftinfiltrationsprediktering, där indata baseras på fältundersökningar, inkl. IR-termografering och uppmätt av neutrala tryckplanet (NPL). Modellens funktionalitet har validerats via mätningar i en av fallstudierna och pekar på tämligen god prediktionsprestanda. Vidare utveckling av modellen föreslås, inkl. ett mer systematiskt kalibreringssystem, för olika typer av byggnader och väderförhållanden. Gällande vädring mättes både ensidigt flöde och tvärdrag genom portar i olika kyrkobyggnader med hjälp av spårgas samt direkta lufthastighetsmätningar i portöppning. Mätresultaten jämfördes med erhållna prediktioner från fyra tidigare utvecklade modeller för ensidig ventilation. De modeller som tog hänsyn till vindturbulens gav något bättre resultat. Enligt utförda mätningar medför en timmes ensidig portvädring i en kyrka cirka 50 % luftutbyte, vilket indikerar att detta är en tillämpbar ventilationsmetod, även för så pass stora byggnadsvolymer. Ett särskilt vädringsdiagram presenteras, som syftar till att underlätta uppskattning av erforderlig vädringsperiod. Vidare studerades predikteringsprestanda hos IDA Indoor Climate and Energy (IDA-ICE) simuleringsprogram avseende vädring, där simuleringsdata jämfördes med fältmätningar i en kyrka. Programmets prediktion av ensidigt luftflöde genom en öppen kyrkport var av samma storlekordning som det uppmäta; dock klarade programmet inte av att hantera inverkan av vindriktning så väl, vilket pekar på en utvecklingspotential. Avslutningsvis undersöktes vinddrivet flöde igenom portöppningar i en kyrkmodell i vindtunnel, där luftomsättningen mättes med hjälp av spårgasmetoden. Vid ensidig vädring observerades högre flöde vid högre vindturbulens och när öppningen var på vindsidan av byggnaden, i överensstämmelse med fältmätningarna. Dessutom var vädringsflödet vid tvärdrag i storleksordningen 15 högre än det vid ensidig vädring. Det verkar alltså som att man kan öka vädringstakten avsevärt om man kan åstadkomma tvärdrag. Kalibreringskonstanter presenteras också för en enkel ekvation för vinddrivet flöde genom portar. Vindtunnelstudien indikerar vidare att advektion genom turbulens är en viktigare vädringsmekanism än pumpning. Föreliggande arbete bidrar med kunskap speciellt kring luftinfiltration och vädring genom portar i höga en-zonsbyggnader. Resultaten kan även vara tillämpliga på andra typer av höga en-zonsbyggnader såsom industrihallar, atrier/ljusgårdar och idrottshallar. / Church project
137

Hartbeespoortdam Butterfly Conservancy : an ecological splurge

Pettey, Ryan Patrick 28 May 2004 (has links)
The thesis focuses on different habitable spaces which have been designed to promote the existence of a number of South African butterfly species. The architecture responses to the context as well as to one of the largest insect groups, the order L e p i d o p t e r a. Following a sustainable approach, more ecological knowledge is at the core of the design. Instead of human functional needs driving the design, site components respond to the indigenous spatial character, climate, topography, soils, and vegetation as well as compatibility with the existing cultural context. / Dissertation (MArch(Prof))--University of Pretoria, 2006. / Architecture / unrestricted
138

Kontrollierte natürliche Lüftung in Büro- und Verwaltungsgebäuden: Ein Beitrag zur Steigerung von Energieeffizienz und Nutzerbehaglichkeit

Scheuring, Leonie 26 August 2022 (has links)
Es ist ein politisch erklärtes Ziel, den Ausstoß von klimaschädlichen Treibhausgasen weltweit zu verringern. Eine wesentliche Stellschraube im Gebiet des Bauwesens stellt hierbei die Einsparung von Energien zur Raumkonditionierung dar. Diese wird unter anderem über das Lüftungskonzept beeinflusst. Die Belüftung von Gebäuden ist zwingend notwendig, um die Emissionen der Baustoffe und die der Menschen, beispielsweise ihren CO2-Ausstoß über die Atmung, abzuführen und der Schimmelbildung vorzubeugen. Erfolgt die Belüftung über öffenbare Fenster – natürliche Lüftung – wird so allerdings energetisch aufwändig temperierte Raumluft mit untemperierter Außenluft ausgetauscht. Daraus können Wärmeverluste und thermisches Unbehagen resultieren. Energieeffiziente Technologien sind ventilatorgestützte Lüftungssysteme mit Wärmerückgewinnung. Doch nicht für alle Gebäudekonzepte und Nutzer stellen diese Lüftungskonzepte einen hohen Nutzerkomfort dar. Korrelationen zwischen Gebäuden mit ventilatorgestützten Lüftungsystemen und dem Sick-Building-Syndrom sind in der Literatur beschrieben, während hier für natürliche Lüftungskonzepte keine Korrelation besteht. Stattdessen wird in Nutzerbefragungen der natürlichen Lüftung eine hohe Akzeptanz zugeschrieben. Mit elektrisch angetriebenen Fenstern kann die natürliche Lüftung nutzerunabhängig gesteuert und so Wärmeverluste und thermisches Unbehagen kontrolliert werden. Bisher sind die Auslegungen solcher kontrollierten natürlichen Lüftungskonzepte noch sehr planungsintensiv. Das Ziel der Arbeit ist es, für Büro- und Verwaltungsgebäude Öffnungs- und Schließsignale einer kontrollierten natürlichen Lüftung zu geben. Diese zeichnen sich darüber aus, dass sie ein gesundes Raumklima, eine hohe Nutzerbehaglichkeit und Energieeffizienz über den Jahresverlauf schaffen und auf ihre Robustheit gegenüber Änderungen von Gebäuderandbedingungen überprüft sind. Für das Ziel wird ein über CO2- und Temperatursensoren gesteuertes Fenstersystem mittels dynamisch thermischer Gebäudesimulationen in vier Varianten von Schließsignalen auf thermische Behaglichkeit und Energiebedarf untersucht. Die Grundlage dazu stellt die bezüglich Entwurf, Konstruktion und Nutzung allgemeingültige Entwicklung eines Büroraums dar. Der Büroraum wird im Simulationsmodell abgebildet und in Realität errichtet. Die Kombination von Simulationsmodell und realem, als experimentellem Teststand ausgeführtem Büroraum ermöglicht verifizierte Ergebnisse. So werden vier Berechnungsmodelle für Luftvolumenströme von Fenstern über den Teststand verifiziert. Dazu dienen Luftwechselmessungen nach der Konstantinjektionsmethode an 173 Fensteröffnungen für fünf Außentemperatur- und elf Windgeschwindigkeitsbereiche. Das Berechnungsmodell nach DIN EN 16798-7 zeigt sich als realitätsnah. Da dieses Berechnungsmodell nicht im Gebäudesimulationsprogramm implementiert ist, wird eine Methode zur Implementierung entwickelt. Über das entwickelte Simulationsmodell zeigt sich, dass eine kombinierte CO2- und temperaturgesteuerte kontrollierte natürliche Lüftung nur zweimal im Jahr ihre Grenzwerte zur Fensteröffnung und -schließung variieren muss, um ganzjährig eine hohe Energieeffizienz und Nutzerbehaglichkeit zu schaffen. Die Schließsignale des sensorgesteuerten Fenstersystems werden in eine Zeitsteuerung überführt. Es zeigt sich, dass für die kühlen Monate jede Öffnung mit identischer Dauer angesetzt werden darf. In wärmeren Monaten muss die Öffnungsdauer in Abhängigkeit der Außentemperatur angepasst werden, so dass eine Zeitsteuerung mit einer Außentemperaturmessung gekoppelt werden muss. Die Ergebnisse zeigen, dass über eine Variation der Schließsignale einer kontrollierten natürlichen Lüftung die Energieeffizienz und die thermische Behaglichkeit wesentlich gesteigert werden und dass selbst bei geringen Windgeschwindigkeiten und Temperaturdifferenzen die Raumluftqualität stets gewährleistet ist. Für nahezu alle Standorte in Deutschland kann die kontrollierte natürliche Lüftung so den Kühlbedarf der untersuchten Büroräume eliminieren, ohne in einer sommerlichen Überhitzung der Räume zu resultieren. Die entwickelten und bezüglich Raumluftqualität und thermischer Behaglichkeit charakterisierten Sensor- und Zeitsteuerungen tragen dazu bei, die kontrollierte natürliche Lüftung als wartungsarme, technikreduzierte Alternative zu der ventilatorgestützten Lüftung zu etablieren.:1 Einleitung 2 Natürliche Lüftung 3 Kontrollmöglichkeiten der natürlichen Lüftung 4 Entwicklung der Untersuchungsmodelle 5 Voruntersuchungen 6 Sensorsteuerung für den Basisraum 7 Zeitsteuerung für den Basisraum 8 Übertragung auf unterschiedliche Gebäuderandbedingungen 9 Diskussion und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur 12 Abbildungsnachweis 13 Bezeichnungen 14 Anhang / It is a politically declared goal to reduce the emission of climate-damaging greenhouse gases worldwide. To support this goal by the building industry a key driver is the saving of energy for room conditioning. Among other factors, this is influenced by the ventilation concept. Also the ventilation of buildings is absolutely necessary in order to remove the emissions of the building materials and those of the people, for example their CO2 emissions through breathing as well as to prevent mould. However, if ventilation is carried out via openable windows - natural ventilation - then energetically expensive tempered room air is exchanged with cold outside air. This could result in heat loss and thermal discomfort. Mechanical ventilation systems with heat recovery are energy-efficient technologies. However, these ventilation concepts do not represent a high level of user comfort for all building concepts and users. Correlations between buildings with mechanical ventilation systems and sick building syndrome are described in the literature, while there is no such correlation for natural ventilation concepts. Instead, a high level of acceptance is attributed to it in user surveys. With electrically driven and controlled windows, natural ventilation can be controlled independently from the user, thus minimizing heat loss and thermal discomfort. So far, the design of such controlled natural ventilation concepts is still very planning-intensive. The aim of this work is to provide opening and closing signals for controlled natural ventilation in office buildings. These are characterized for their capability to create a high indoor air quality, high user comfort and high energy efficiency over the course of the year and are tested for their robustness against changes in building characteristics. To achieve this goal, a window system controlled by CO2 and temperature sensors is examined for its impact on thermal comfort and energy demand by means of building simulation tools with four variants of closing signals. As a basis for this examination an office room is utilized that conforms to the current standards in terms of design, construction and use. The office space is transferred to a simulation model and constructed in reality. The combination of the simulation model and the real office space, which is designed as an experimental test rig, enables verified results. Thus, four calculation models for air flow volumes of windows are verified via the test rig. Air exchange measurements according to the constant injection method on 173 window openings for five outdoor temperature and eleven wind speed ranges are used for this purpose. The calculation model according to DIN EN 16798-7 proves to be close to reality. Since this calculation model is not implemented in the building simulation program, a method for its implementation is developed. Using the developed simulation model, it is shown that a combined CO2- and temperature-controlled natural ventilation creates a high energy efficiency and user comfort throughout the year by varying its limit values for window opening and closing only twice a year. The closing signals of the sensor controlled window system are transferred to a time control system. It turns out that for the cold months, each opening could be set to the same opening time. In warmer months, the opening time must be adjusted depending on the outside temperature. Thus, a time control should be coupled with an outside air temperature measurement. The results show that by varying the closing signals of a controlled natural ventilation system, the energy efficiency and thermal comfort is significantly increased and that a high indoor air quality is always guaranteed even at low wind speeds and low temperature differences. For almost all locations in Germany, controlled natural ventilation can thus eliminate the cooling requirements in the office spaces studied without overheating in the summer. The developed sensor and time control systems are characterized by high indoor air quality and good thermal comfort. Thus, these systems are a contribution to promote controlled natural ventilation as a low-maintenance and technically reduced alternative to mechanical ventilation.:1 Einleitung 2 Natürliche Lüftung 3 Kontrollmöglichkeiten der natürlichen Lüftung 4 Entwicklung der Untersuchungsmodelle 5 Voruntersuchungen 6 Sensorsteuerung für den Basisraum 7 Zeitsteuerung für den Basisraum 8 Übertragung auf unterschiedliche Gebäuderandbedingungen 9 Diskussion und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur 12 Abbildungsnachweis 13 Bezeichnungen 14 Anhang

Page generated in 0.2541 seconds