Spelling suggestions: "subject:"navier–stokes equations"" "subject:"navier–vstokes equations""
351 |
Αριθμητική προσομοίωση τυρβώδους ροής και μεταφορά ιζήματος πυθμένα επαγόμενων από τη διάδοση και θραύση παράκτιων κυματισμώνΚολοκυθάς, Γεράσιμος 02 March 2015 (has links)
Στην παρούσα διατριβή διερευνάται η επίδραση παράκτιων μη-θραυόμενων κυματισμών στη μορφολογική ισορροπία αμμώδους πυθμένα με πτυχώσεις, η θραύση εκχείλισης κυμάτων πάνω από πυθμένα σταθερής κλίσης, καθώς και τα συνεπαγόμενα κυματογενή ρεύματα στη ζώνη απόσβεσης. Για το σκοπό αυτό αναπτύσσονται μοντέλα αριθμητικής προσομοίωσης, τα οποία πραγματοποιούν επίλυση των δισδιάστατων και τρισδιάστατων εξισώσεων ασυμπίεστης, συνεκτικής ροής με ελεύθερη επιφάνεια. Η αριθμητική επίλυση των εξισώσεων ροής, Navier-Stokes, επιτυγχάνεται με τη χρήση κλασματικής μεθόδου για τη χρονική ολοκλήρωση, ενώ η χωρική διακριτοποίηση πραγματοποιείται μέσω ενός υβριδικού σχήματος πεπερασμένων διαφορών και ψευδο-φασματικών μεθόδων προσέγγισης. Στις προσομοιώσεις της θραύσης εκχείλισης κύματος γίνεται χρήση της μεθόδου προσομοίωσης μεγάλων κυμάτων LWS, σύμφωνα με την οποία επιλύονται μόνο οι μεγάλες χωρικές διακυμάνσεις της ταχύτητας και της ελεύθερης επιφάνειας, ενώ η επίδραση των μικρότερων διακυμάνσεων περιγράφεται μέσω ενός μοντέλου διατμητικών τάσεων υποκλίμακας (SGS), ανάλογα με ότι ισχύει στη μέθοδο προσομοίωσης μεγάλων δινών, LES. Ένα ανεξάρτητο μοντέλο για την προσομοίωση της μεταβολής μορφολογίας πυθμένα, μέσω μεταφοράς φορτίου πυθμένα, αναπτύσσεται και χρησιμοποιείται σε σύζευξη με τα μοντέλα προσομοίωσης δισδιάστατης ροής. H παροχή του φορτίου πυθμένα υπολογίζεται μέσω τροποποίησης γνωστών εμπειρικών σχέσεων, σε συνδυασμό με τη στιγμιαία διατμητική τάση πυθμένα από τη μονάδα προσομοίωσης της ροής. Από τις προσομοιώσεις ροής πάνω από πυθμένα με πτυχώσεις, προκύπτει ότι η παρουσία των πτυχώσεων επηρεάζει σημαντικά το κυματογενές οριακό στρώμα, ενώ οι μορφολογικές προσομοιώσεις οδηγούν στο συμπέρασμα ότι, η μακροπρόθεσμη ισορροπία των πτυχώσεων επέρχεται για συγκεκριμένη τιμή της γωνίας/συντελεστή δυναμικής τριβής, η οποία συσχετίζεται με τις διαστάσεις των πτυχώσεων και τα χαρακτηριστικά του κύματος. Για τη θραύση εκχείλισης εξετάζονται οι περιπτώσεις κάθετης αλλά και υπό γωνία, ως προς την ακτογραμμή, διάδοσης κυμάτων πάνω από πυθμένα σταθερής κλίσης 1/35. Τα αποτελέσματα για τα χαρακτηριστικά της κάθετης θραύσης (ύψος και βάθος θραύσης, Ηb και db, αντίστοιχα) και του συνεπαγόμενου υποβρύχιου ρεύματος, συγκρίνονται με δημοσιευμένες πειραματικές μετρήσεις και η συμφωνία είναι ικανοποιητική. Το μοντέλο είναι σε θέση να προσομοιώσει την ανάπτυξη του επιφανειακού στροβίλου στο μέτωπο του θραυόμενου κύματος, η οποία συνοδεύεται από αύξηση της ισχύος των SGS τάσεων (μέχρι βάθους d/db ≈ 0.75) και διαδοχική μείωσή τους, μέχρι μηδενισμού, στα ρηχά της ζώνης απόσβεσης. Από τα αποτελέσματα για το πεδίο στροβιλότητας και τις SGS τάσεις, κατά την προσομοίωση της υπό γωνία θραύσης, παρατηρείται η σταδιακή θραύση του κύματος κατά μήκος της κορυφογραμμής, ενώ προκύπτει ότι οι τελευταίες παραμένουν ενεργές για περίπου δύο μήκη κύματος. Επίσης, η μέση ταχύτητα του παράλληλου ρεύματος προκύπτει πιο ενισχυμένη σε ρηχά βάθη στη ζώνη απόσβεσης (d/db < 0.5), ενώ η κατακόρυφη κατανομή του παρουσιάζεται σαφώς επηρεασμένη από την παρουσία του υποβρύχιου ρεύματος κοντά στον πυθμένα. / In the present thesis, the impact of nearshore, non-breaking waves on the morphological equilibrium of small scale patterns that appear in sandy beds, well-known as ripples, the spilling wave breaking over a bed of constant slope and the wave-induced currents developing in the surf zone, are investigated. Numerical models are developed for the simulation of the aforementioned phenomena, based on the numerical solution of the two/three-dimensional, incompressible, viscous, free-surface flow. The numerical solution of the flow equations, i.e. the Navier-Stokes equations, is accomplished by means of a time-splitting scheme of three stages for the temporal discretization and a hybrid scheme for the spatial discretization, with central finite differences along the streamwise direction and pseudo-spectral approximations, with Fourier modes and Chebyshev polynomials along the spanwise and vertical directions, respectively. The simulations of spilling wave breaking are performed employing the so-called large-wave simulation (LWS) method, according to which, large velocity and free-surface scales are fully resolved, while the effect of subgrid scales is modeled by eddy-viscosity stresses, similar to large-eddy simulation (LES) methodology. The bed morphology evolution, driven by the bed load sediment transport, is simulated by a morphology model, which performs the numerical solution of the sediment mass conservation equation, utilized coupled with the two-dimensional flow model. The bed load transport rate, is computed inserting bed shear stress timeseries (by the flow model) into published empirical formulas that have been modified to fit the characteristics of the investigated cases. For the case of rippled bed, it was found that the structure of the wave boundary layer is substantially influenced by the presence of the ripples, and that for a certain value of the dynamic friction angle/coefficient, which is correlated to the ripple dimensions and the wave characteristics, the ripples remain in quasi-steady equilibrium after each wave period. Wave breaking is investigated by the simulation of normal and oblique to the shoreline propagation, transformation and spilling breaking of incoming Stokes waves, over a bed of constant slope, tanβ = 1/35. Our numerical results are compared to published experimental measurements, and it is found that the LWS model predicts adequately the wave breaking parameters - breaking height, Ηb, and depth, db- and the distribution of the undertow current in the surf zone. The development of the surface roller in the breaking wavefront is also captured, while is connected to the increase of the strength of the sub-grid (SGS) stresses in the outer surf zone (up to d/db ≈ 0.75) and their successive decrease at shallower depths close to the shoreline. For the case of oblique wave breaking, the vorticity and the SGS stresses distribution in the surf zone clearly indicate the gradual breaking along the wave crestline, while the latter (SGS stresses) remain active for about two wavelenghts. Finally, the magnitude of the longshore current is found to be enhanced at shallower depths in the surf zone (d/db < 0.5), while its vertical distribution is affected by the interaction with the undertow current.
|
352 |
Une nouvelle mise en oeuvre de la méthode IIM pour les équations de Navier-Stokes en présence d'une force singulièreConti, Marc January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
353 |
Overset adaptive strategies for complex rotating systemsShenoy, Rajiv 22 May 2014 (has links)
The resolution of the complex physics of rotating configurations is critical for any engineering analysis that requires multiple frames of reference. Two well-known applications are in the rotorcraft and wind energy industries. Rotor wake impingement from rotor-fuselage and wind turbine-tower interactions impact structural and acoustic characteristics. Additionally, parasite drag resulting from rotorcraft hubs may result in severe limitations on forward flight vehicle performance. Complex turbulent wakes from rotors and hubs impinging on downstream empennage can create adverse aeroelastic behavior and can affect handling qualities. Numerical simulations of these flows require state-of-the-art Navier Stokes methods using dynamic overset grids. However, many current methods typically used in industry result in wakes that dissipate essential features. In order to address these concerns, two advancements are introduced in this thesis. Feature-based grid adaptation on dynamic overset grids has been developed and demonstrated with an unstructured Navier Stokes solver. The unique feature of the adaptation technique is that it is applied globally on the overset grid system except within the boundary layer. In concert with grid adaptation, an efficient parallelized search algorithm for solution interpolation over massively distributed systems has been created. This results in cost-effective interpolation that retains the numerical order of accuracy and has been verified in both space and time. The improvements have been demonstrated for rotor-fuselage interaction and a generic rotating hub. Detailed analysis of convergence of the methodology and sensitivity of the results to relevant parameters have also been included.
|
354 |
Implementation And Comparison Of Turbulence Models On A Flat Plate Problem Using A Navier-stokes SolverGenc, Balkan Ziya 01 December 2003 (has links) (PDF)
For turbulent flow calculations, some of the well-known turbulence models in the literature are applied on a previously developed Navier-Stokes solver designed to handle laminar flows. A finite volume formulation, which is cell-based for inviscid terms and cell-vertex for viscous terms, is used for numerical discretization of the Navier-Stokes equations in conservative form. This formulation is combined with one-step, explicit time marching Lax-Wendroff numerical scheme that is second order accurate in space. To minimize non-physical oscillations resulting from the numerical scheme, second and fourth order artificial smoothing terms are added. To increase the convergence rate of the solver, local time stepping technique is applied.
Before applying turbulence models, Navier-Stokes solver is tested for a case of subsonic, laminar flow over a flat plate. The results are in close agreement with Blasius similarity solutions.
To calculate turbulent flows, Boussinesq eddy-viscosity approach is utilized. The eddy viscosity (also called turbulent viscosity), which arises as a consequence of this approach, is calculated using Cebeci-Smith, Michel et. al., Baldwin-Lomax, Chien&rsquo / s k-epsilon and Wilcox&rsquo / s k-omega turbulence models. To evaluate the performances of these turbulence models and to compare them with each other, the solver has been tested for a case of subsonic, laminar - transition fixed - turbulent flow over a flat plate. The results are verified by analytical solutions and empirical correlations.
|
355 |
Modelagem matemática de esteiras em desenvolvimento temporal utilizando o método pseudoespectral de FourierJacob, Bruno Tadeu Pereira 13 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work is dedicated to perform the mathematical modeling and DNS and LES
simulations of a three-dimensional, temporally evolving incompressible plane wake are
performed, seeking to evidence differences in stability, transition and onset of both coherent
and small scale structures, when the flow is subjected to random perturbations of different
amplitudes. The perturbations are generated using the Random-Flow-Generator (RFG)
technique, being imposed to the flow as initial conditions.
The Navier-Stokes equations are solved in a prismatic domain, with periodic boundary
conditions in all directions, using Fourier pseudospectral method. The invariants of the
velocity gradient tensor, Q and R, are analyzed for random perturbations with magnitudes
10−3, 10−4 and 10−5, showing the onset of their characteristic teardrop correlation map.
Moreover, maps of the second and third invariants of the rate-of-strain tensor, QS and
RS, are shown, in order to evidence the differences in local flow strain and topological
characteristics of the dissipation of kinetic energy. Isosurface plots of Q and QW, as well
as vorticity contours are shown, allowing visual identification of the coherent structures
and confirming patterns predicted by the invariant maps. / O presente trabalho se dedica a modelagem matemática e a simulações numéricas DNS e
LES de uma esteira tridimensional, incompressível, em desenvolvimento temporal, buscando
evidenciar diferenças na estabilidade, transição e no desenvolvimento de estruturas coerentes
e de pequena escala, quando o escoamento é submetido a perturbações randômicas de
diferentes amplitudes. As perturbações são geradas utilizando-se a técnica Random Flow
Generator (RFG), sendo sobrepostas à condição inicial do escoamento.
As equações de Navier-Stokes são resolvidas em um domínio prismático, com condições
de contorno periódicas em todas as direções, utilizando-se o método pseudoespectral de
Fourier. Os invariantes do tensor gradiente de velocidade, Q e R, são analisados para
perturbações de magnitude 10−3, 10−4 and 10−5, mostrando a formação de uma correlação
no formato de gota, característica da resolução das equações de Navier-Stokes. Além disso,
são apresentados mapas do segundo e terceiro invariante do tensor taxa de deformação, QS
e RS, a fim de evidenciar as diferenças locais no escoamento e as características topológicas
na taxa de dissipação de energia cinética. Isosuperfícies de Q e QW, bem como contornos de
vorticidade são apresentados, possibilitando a identificação visual das estruturas coerentes,
e confirmando os padrões de estruturas previstos pelos mapas de invariância. / Mestre em Engenharia Mecânica
|
356 |
Solução semianalítica para o perfil vertical do vento na camada limite planetária / A semi-analytical solution for the vertical wind profile in the atmospheric boundary layerBuligon, Lidiane 04 August 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present study, using the Generalized Integral Transform Technique (GITT),
we derive a semi-analytical solution of the Navier-Stokes equation to obtain the mean wind
profile in the atmospheric boundary layer. The technique combines series expansion and an
integration employing an inverse-transform pair. The PBL is discretized into N sub-intervals
in such manner that inside each sub-region the eddy diffusivity is the average value, this allows
the use of realistic eddy diffusivity profiles, which depend on the physical characteristics of the
energy-containing eddies. The nonlinear terms are written in terms of kinematical properties
of the flow, such as divergence and vorticity, allowing the solutions to be interpreted in
terms of large-scale synoptic conditions. The model results are compared to observed wind
profiles obtained from the classical Wangara experiment. In addition, the results obtained by
the proposed model are compared with the unidimensional model solved by the method of
discretization, the model of two layers, with the logarithmic law and the Ekman model. The
method used was efficient for the problem studied, since it has presented results consistent
with those available in literature. / No presente estudo, usando a Técnica da Transformada Integral Generalizada (GITT),
deriva-se uma solução semianalítica para as Equações de Navier-Stokes aplicada à Camada
Limite Planetária (CLP). A técnica combina uma expansão em série com uma integração
por meio de um par de transformada-inversa. A CLP é discretizada em N subintervalos de
maneira que, dentro de cada sub-região, os coeficientes de difusão assumam valores médios, o
que nos permite utilizar perfis mais realísticos para o coeficiente de difusão e que dependem das
características dos turbilhões mais energéticos. Os termos não-lineares são escritos em função
das propriedades cinemáticas do escoamento, como divergência e vorticidade, permitindo que
a solução seja interpretada em termos das condições sinóticas de grande escala. O desempenho
do modelo estudado foi comparado com dados experimentais de vento medidos durante os
experimentos de Wangara. Adicionalmente, os resultados obtidos através do modelo proposto
são comparados com o modelo unidimensional resolvido pelo método de discretização, com
o modelo de duas camadas, com a Lei Logarítmica e com o modelo de Ekman. O método
empregado mostrou-se eficiente para o problema estudado, uma vez que apresentou resultados
coerentes com os disponíveis na literatura.
|
357 |
Numerické řešení třírozměrného stlačitelného proudění / Numerical Solution of the Three-dimensional Compressible FlowKyncl, Martin January 2011 (has links)
Title: Numerical Solution of the Three-dimensional Compressible Flow Author: Martin Kyncl Department: Department of Numerical Mathematics Supervisor: Doc. RNDr. Jiří Felcman, CSc. Abstract: This thesis deals with a fluid flow in 3D in general. The system of the equations, describing the compressible gas flow, is solved numerically, with the aid of the finite volume method. The main purpose is to describe particular boundary conditions, based on the analysis of the incomplete Riemann problem. The analysis of the original initial-value problem shows, that the right hand-side initial condition, forming the Riemann problem, can be partially replaced by the suitable complementary condition. Several modifications of the Riemann problem are introduced and analyzed, as an original result of this work. Algorithms to solve such problems were implemented and used in code for the solution of the compressible gas flow. Numerical experiments documenting the suggested methods are performed. Keywords: compressible fluid flow, the Navier-Stokes equations, the Euler equations, boundary conditions, finite volume method, the Riemann problem, numerical flux, tur- bulent flow
|
358 |
Kvalitativní vlastnosti řešení rovnic mechaniky tekutin / Qualitative properties of solutions to equations of fluid mechanicsTichý, Jakub January 2014 (has links)
Qualitative properties of solutions to equations of fluid mechanics Mgr. Jakub Tichý Supervisor: doc. Mgr. Petr Kaplický, Ph.D. Department: Department of Mathematical Analysis Abstract This thesis is devoted to the boundary regularity of weak solutions to the system of nonlinear partial differential equations describing incompressible flows of a certain class of generalized Newtonian fluids in bounded domains. Equations of motion and continuity equation are complemented with perfect slip boundary conditions. For stationary generalized Stokes system in Rn with growth condi- tion described by N-function Φ the existence of the second derivatives of velocity and their regularity up to the boundary are shown. For the same system of equa- tions integrability of velocity gradients is proven. Lq estimates are obtained also for classical evolutionary Stokes system via interpolation-extrapolation scales. Hölder continuity of velocity gradients and pressure is shown for evolutionary generalized Navier-Stokes equations in R2 . Keywords Generalized Stokes and Navier - Stokes equations, incompressible fluids, perfect slip boundary conditions, regularity up to the boundary
|
359 |
Interakce proudící tekutiny a elastického tělesa / Fluid-structure interactionKosík, Adam January 2016 (has links)
In this thesis we are concerned with the numerical simulation of the in- teraction of compressible viscous flow and an elastic structure in 2D. For the elastic deformation we use a 2D linear model and nonlinear St. Venant- Kirchhoff and neo-Hookean models. The flow is described by the compressible Navier-Stokes equations written in the arbitrary Lagrangian-Eulerian (ALE) form in order to take into account the time-dependence of the flow domain. The discretization of both the flow problem and the elasticity problem is re- alized by the discontinuous Galerkin finite element method (DGM). We focus on testing the DGM applied to the solution of the flow and elasticity prob- lems. Furthermore, we discuss the coupling algorithm and the technique, how to deal with the deformation of the computational domain for the fluid flow problem. Our work is motivated by the biomedical applications. Numerical experiments include numerical simulation of vibrations of human vocal folds induced by the compressible viscous flow.
|
360 |
Finite Element Approximations of 2D Incompressible Navier-Stokes Equations Using Residual ViscositySjösten, William, Vadling, Victor January 2018 (has links)
Chorin’s method, Incremental Pressure Correction Scheme (IPCS) and Crank-Nicolson’s method (CN) are three numerical methods that were investigated in this study. These methods were here used for solving the incompressible Navier-Stokes equations, which describe the motion of an incompressible fluid, in three different benchmark problems. The methods were stabilized using residual based artificial viscosity, which was introduced to avoid instability. The methods were compared in terms of accuracy and computational time. Furthermore, a theoretical study of adaptivity was made, based on an a posteriori error estimate and an adjoint problem. The implementation of the adaptivity is left for future studies. In this study we consider the following three well-known benchmark problems: laminar 2D flow around a cylinder, Taylor-Green vortex and lid-driven cavity problem. The difference of the computational time for the three methods were in general relatively small and differed depending on which problem that was investigated. Furthermore the accuracy of the methods also differed in the benchmark problems, but in general Crank-Nicolson’s method gave less accurate results. Moreover the stabilization technique worked well when the kinematic viscosity of the fluid was relatively low, since it managed to stabilize the numerical methods. In general the solution was affected in a negative way when the problem could be solved without stabilization for higher viscosities.
|
Page generated in 0.0965 seconds