• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Properties of nestin-GFP-expressing cells in different regions of adult murine brain

Wang, Liping 21 July 2005 (has links)
Wir haben im Hippocampus von transgenen Mäusen, die grün fluoreszierendes Protein (GFP) unter der Kontrolle eines Promotors für Nestin exprimieren, mutmaßliche Neuronale Vorläuferzellen identifiziert. Wir haben bereits in früheren Arbeiten gezeigt, dass Nestin-GFP exprimierende Vorläuferzellen in der subgranularen Zone des adulten Gyrus Dentatus sich in zwei Subpopulationen entsprechend ihrer morphologischen Eigenschaften einteilen lassen. Eine kleine, morphologisch unterscheidbare Population von Vorläuferzellen mit neuronalen Eigenschaften erhielt GABAergen, aber keinen glutamatergen Input, dies widerspiegelt die Situation während der Entwicklung des Gehirns. Außerdem haben wir ecto-nucleotidase NTPDase2 und functionelle P2X Rezeptoren in hippocampalen Vorläuferzellen identifiziert. Wir haben auch das Verhalten Nestin exprimierender Zellen bis zu 8 Wochen nach 30 minütiger Occlusion der mittleren cerebralen Arterie (MCAo)/reperfusion und im murinen experimentellen Glioblastom Modell untersucht. Neben den bereits publizierten Ergebnissen, die ich auch in meiner Doktorarbeit vorgestellt habe, habe ich die elektrophysiologischen Eigenschaften der Nestin-GFP-exprimierenden Zellen in der Amygdala und im CA 1 des Hippocampus untersucht. / Using transgenic mice that express green fluorescent protein (GFP) under control of the nestin promoter, the putative precursor cells were identified. We have previously shown that nestin-GFP expressing precursor cells in the adult subgranular zone of hippocampal dentate gyrus could be divided into two distinct subpopulations based on morphological criteria. A small, morphological distinct population of precursor cells with neuronal properties received GABAergic, but not glutamatergic input similar as in brain development. We identified ecto-nucleotidase NTPDase2 and functional P2X receptors at hippocampal progenitor cells. We also studied the fate of nestin-GFP-expressing cells up to 8 weeks after 30 mins occlusion of the middle cerebral artery (MCAo)/reperfusion and in murine experimental glioblastoma model. Except for the published results which was included in this PhD dissertation, I also studied the electrophysiology properties of nestin-GFP-expression cells in amygdala and in Ca1 of hippocampus.
2

Intracellular signaling cascades in the dopaminergic specification of fetal mesencephalic neural progenitor cells.

Meyer, Anne K. 19 June 2009 (has links) (PDF)
Neural stem (progenitor) cells (NPCs) from fetal tissue are an ideal transplantable cell source. They divide rapidly, are able to generate cells of all three neural lineages and do not divide uncontrolled once transplanted into a host organism. To obtain large quantities of cells for transplantation strategies and to eliminate primary cell contaminations, long periods of in vitro cultivation are necessary. Mouse NPCs are a crucial tool for further investigations of neural stem cells because they make the employment of transgenic animals in vivo and cells in vitro possible. So far only short-term expanded fetal mouse NPCs have been shown to generate dopaminergic neurons and it is not clear whether this was due to differentiation or a result of increased survival of primary dopaminergic neurons. The aims of the thesis were to characterize mouse fetal NPCs, to establish the long-term expansion of fetal mouse NPCs and the generation of dopaminergic neurons in long-term expanded fetal mouse NPCs, to investigate the signaling mechanisms involved in the differentiation of mouse fetal NPCs towards the dopaminergic phenotype and to compare short and long-term expanded NPCs. Long-term expanded fetal mesencephalic NPCs could be grown under suspension and adherent culture conditions and showed self- renewing capacity as well as markers typical for NPCs. They could be differentiated into the three major cell types of the nervous system, but suspension NPCs had a larger potential to generate neurons than adherently grown NPCs. Signaling cascades involved in this process were p38 and Erk1/2 mediated. Long-term expanded NPCs did not have the potential to generate neuronal sub-types. Importantly, they did not generate dopaminergic neurons. Mouse fetal NPCs from three different developmental stages (E10, E12, and E14) were employed but were not able to differentiate into dopaminergic neurons using factors known to stimulate in vitro dopaminergic specification. When cultivated in vitro for short periods, fetal mesencephalic NPCs were able to generate dopaminergic neurons. By eliminating all primary Th- positive neurons, FACS-sorting of NPCs proved a de novo generation of dopaminergic neurons, because after cultivation and differentiation of Th- depleted cell solutions dopaminergic neurons were present in the culture. However, these newly generated neurons failed to incorporate BrdU, making a generation without cell division from precursors probable. The precursor population of short cultures differed from long-term expanded cultures suggesting an ‘aging’ effect of in vitro conditions. IL-1 was a potent inducer of the dopaminergic neuronal phenotype in short-term expanded in vitro cultures and was expressed in vitro as well as in vivo at E14. Several important conclusions concerning fetal mouse stem cell behavior could be drawn from the results of this work: Firstly, the results showed for the first time that in fetal mouse mesencephalic NPCs dopaminergic neurons differentiate from precursors without cell division, therefore consuming those progenitors. Therein fetal mouse NPCs differ significantly from rat and human NPCs or respond differently to the same in vitro conditions that need to be optimized for fetal mouse NPCs. Secondly, less committed precursors find appropriate conditions to proliferate but not to generate the more committed DA precursors that are able to generate dopaminergic neurons. The hallmarks of stem cells, self-renewal and multipotentiality, seem to be part of a delicate balance, that, when unsettled, goes in favor of one side without the possibility of returning to the previous status. Further research should focus on two coherent issues: the isolation of more pure populations of progenitors and the more precise characterization of progenitor populations to find out which in vitro conditions need to be provided to keep the balance between proliferation and differentiation potential. The knowledge gained about stem cells this way would help establish cell sources for transplantation strategies. / Stammzellen sind ein wichtiges Werkzeug für regenerative Therapien im Bereich der neurodegenerativen Erkrankungen wie der Parkinson’schen Erkrankung. Ein besonderer Vorteil von Stammzellen gegenüber dem bereits zur Transplantation verwendeten Primärgewebe, ist ihre Fähigkeit zur fortlaufenden Zellteilung, so dass ausreichende Mengen zur Transplantation zur Verfügung stehen. Der Vorteil von fetalen neuralen Stammzellen (fNSZ) ist ihre genomische Stabilität, die dazu führt, dass bei Transplantationen keine Tumore entstehen. Dennoch ist der Großteil ihrer Eigenschaften und Potentiale noch unbekannt und die optimalen Wachstumsbedingungen für eine lange in vitro Kultur und optimale Differenzierung in dopaminerge Neuronen müssen erforscht werden, um bessere Transplantate herzustellen. Insbesondere Stammzellen der Maus sind für die Forschung von immenser Wichtigkeit, da sie die Arbeit mit transgenen Tieren ermöglichen. Die Zielsetzungen dieser Arbeit waren die Charakterisierung der fNSZ der Maus, die Langzeitexpansion und die anschließende Differenzierung in dopaminerge Neurone. Die Signalkaskaden der frühen Differenzierung und die Unterschiede von kurz- und langzeitkultivierten Stammzellen wurden untersucht. Es konnte gezeigt werden, dass fNSZ der Maus nach Langzeitkultivierung in alle Zelltypen des zentralen Nervensystems, also Neuronen und Glia differenzieren und die dabei aktivierten Signalkaskaden p38 und Erk1/2 vermittelt sind. Das Differenzierungspotential zu neuronalen Subtypen (also auch zu dopaminergen Nervenzellen) verloren diese fetalen Stammzellen unter Kulturbedingungen schnell. Das steht im Gegensatz zu fetalen Stammzellen aus Ratte oder dem Menschen, die auch nach langer Kultivierung ihr dopaminerge Potential erhalten. Nur nach Kurzzeitkultivierung waren dopaminerge Neurone nachzuweisen, die jedoch nicht durch Zellteilung aus Vorläuferzellen hervorgegangen waren. Die Eliminierung aller primären Neurone aus der Mittelhirnisolation durch FACS-sorting von Th-Gfp transgenen Mäusen bewies die de novo Generation der dopaminergen Neurone aus Vorläuferzellen ohne Zellteilung während der Kultivierung der Stammzellen. Diese Ergebnisse zeigten, dass in fetalen mesenzephalen NSZ der Maus dopaminerge Neurone von spezialisierten Vorläuferzellen differenzieren, wodurch diese der Kultur verloren gehen. Weniger spezialisierte Vorläuferzellen finden Bedingungen, die ihre Kultivierung ermöglichen, sind aber nicht in der Lage, spezifischere Vorläuferzellen zu bilden. Die Markenzeichen von Stammzellen, Selbsterneuerung (durch Zellteilung) und das Potential, die Zelltypen des Nervensystems zu generieren, scheinen fein balancierte Zustände zu sein, die bei einer Störung nicht wiederherzustellen sind. Die Ergebnisse dieses Projektes sind von großer Bedeutung für die Forschung zur Zellersatztherapie der Parkinson’schen Erkrankung, deren ultimatives Ziel es ist, eine sichere und verlässlich expandierbare Zellquelle zu etablieren, die fähig ist, in dopaminerge Neurone zu differenzieren. Solche Stammzellen würden Bemühungen um Transplantationsstrategien für neurodegenerative Erkrankungen unterstützen und vorantreiben.
3

Molecular mechanisms of neural stem cell plasticity and neuro-regeneration in an Alzheimer’s-like neurodegeneration model of adult zebrafish

Bhattarai, Prabesh 22 December 2020 (has links)
Aging human brains are prone to neurodegenerative disorders, the most common being the Alzheimer’s disease (AD). Currently, there is no cure for AD, and patients progressively lose neurons leading to reduction in the brain mass. Humans cannot circumvent and counteract this disease. For instance, chronic inflammation that manifests through mild to late stages of the pathology cannot be resolved. The synaptic degeneration that underlies cognitive decline cannot be reversed. As a general outcome, neurons deteriorate and new neurons cannot replace the lost ones. This is in part due to reduced proliferative and neurogenic ability of neural stem cells (NSCs), which normally produce neurons, albeit rather a limited lineage. Recently, in AD patients, neurogenic outcome was shown to reduce dramatically (Moreno-Jimenez et al., 2019; Tobin et al., 2019). This lack of neurogenic input from NSCs in human brains is emerging as a new aspect through which we might find a chance to counteract AD. One prominent question is to find ways to re-activate our NSCs in pathology conditions. Zebrafish is known to have a remarkable regenerative ability enabling it to regenerate its brain as well. Zebrafish brain possesses several neurogenic regions that harbor NSCs to allow continuous neurogenesis throughout adulthood and during regeneration. Radial glial cells in the zebrafish brain act as NSCs that respond to neuronal damage by enhancing brain plasticity and initiating neuroregeneration. Special molecular mechanisms are involved in activating NSCs to form new neurons and initiate the regenerative response. In my PhD project, I aimed to identify such regenerationassociated molecular mechanisms in AD-like neurodegenerative conditions. To investigate the molecular programs that mediate regenerative response in neurodegenerative conditions, we first generated an amyloid-mediated neurodegeneration model in adult zebrafish to mimic certain pathophysiological aspects of AD. We used synthetic Amyloid-β-42 (Aβ42) peptides and injected into the zebrafish brain using cerebroventricular microinjection (CVMI) method. These peptides were tagged with robust cell-penetrating peptide, which were previously shown to efficiently deliver cargo molecules into the zebrafish brain. This approach led to an acute model of neurodegeneration in which Aβ42 deposition was prominent in neurons in adult zebrafish brain, and also exhibited phenotypes reminiscent of human AD5 pathophysiology: apoptosis, inflammation, synaptic degeneration, and cognitive deficits. In contrast to the mammals, zebrafish brain induced the NSC proliferation and enhanced the neurogenesis to initiate a regenerative response. To identify the mechanisms behind this response, we performed whole-RNA transcriptome analyses, which revealed that several genes associated with immune-related signaling pathways were significantly enriched. We further found that Interleukin-4 (IL-4) is activated primarily in neurons and microglia in response to Aβ42, and is sufficient to increase NSC proliferation and neurogenesis. IL-4 binds to its cognate receptor IL4R that is expressed in NSCs, and activates the downstream signaling cascade via STAT6 phosphorylation. These results indicate that Aβ42-induced neurodegeneration in adult zebrafish brain leads to regenerative response mediated by direct activation of NSCs through a neuro-immune cross talk mediated by IL-4 signaling via STAT6 phosphorylation. In an approach to further elucidate how IL-4 signaling would mediate the NSCs response, we performed another whole-RNA transcriptome analyses after IL-4 treatment in homeostatic brains. We found that, apart from direct activation of NSC proliferation, IL-4 also has an indirect effect on NSCs through factors secreted by neurons. Single-cell transcriptomics further revealed the heterogeneity of the NSCs pool in the zebrafish brain, which responds directly or indirectly to Aβ42-induced IL-4. We found that IL-4 induces NSC proliferation and subsequent neurogenesis by suppressing the tryptophan metabolism and reducing the production of the neurotransmitter Serotonin. NSC proliferation was suppressed by Serotonin via downregulation of brain-derived neurotrophic factor (BDNF) in Serotonin-responsive periventricular neurons. BDNF itself enhanced NSC plasticity and neurogenesis via NGFRA/NFkB signaling in zebrafish. This regulatory network is not active in rodents. With these results, we identified a novel IL-4-dependent molecular mechanism of NSC proliferation that is mediated by Serotonin-BDNF-NGFRA regulatory axis. Our results elucidated a novel crosstalk through neuron-glia interaction that regulates regenerative neurogenesis in adult zebrafish AD model. Additionally, we identified two functionally distinct populations of NSCs, which mediate NSCs plasticity through distinct gene expression profiles and versatile signaling mechanisms. Collectively, we propose that zebrafish serves as an excellent model to investigate regeneration-associated mechanisms that enables the inherent capacity of enhanced regenerative neurogenesis upon neurodegeneration. We found that specific signaling6 mechanisms are active in specific subtypes of NSC populations in adult zebrafish brain. Since these mechanisms are normally inactive in NSCs of mammalian brains, particularly in rodents after AD-like conditions, we speculate that activating such candidate mechanisms in distinct NSCs population in mammalian brains could induce NSCs plasticity response. Indeed, our studies also suggested that some of these candidates could be harnessed to force human NSCs to become proliferative and neurogenic. Therefore, my PhD work opened up a new avenue of research that utilizes zebrafish for understanding what it takes for a vertebrate NSC to remain neurogenic even after AD pathology. Overall, I believe that this research route will be instrumental in designing nature-inspired therapeutic strategies for AD in regenerative medicine.
4

Intracellular signaling cascades in the dopaminergic specification of fetal mesencephalic neural progenitor cells.

Meyer, Anne K. 25 May 2009 (has links)
Neural stem (progenitor) cells (NPCs) from fetal tissue are an ideal transplantable cell source. They divide rapidly, are able to generate cells of all three neural lineages and do not divide uncontrolled once transplanted into a host organism. To obtain large quantities of cells for transplantation strategies and to eliminate primary cell contaminations, long periods of in vitro cultivation are necessary. Mouse NPCs are a crucial tool for further investigations of neural stem cells because they make the employment of transgenic animals in vivo and cells in vitro possible. So far only short-term expanded fetal mouse NPCs have been shown to generate dopaminergic neurons and it is not clear whether this was due to differentiation or a result of increased survival of primary dopaminergic neurons. The aims of the thesis were to characterize mouse fetal NPCs, to establish the long-term expansion of fetal mouse NPCs and the generation of dopaminergic neurons in long-term expanded fetal mouse NPCs, to investigate the signaling mechanisms involved in the differentiation of mouse fetal NPCs towards the dopaminergic phenotype and to compare short and long-term expanded NPCs. Long-term expanded fetal mesencephalic NPCs could be grown under suspension and adherent culture conditions and showed self- renewing capacity as well as markers typical for NPCs. They could be differentiated into the three major cell types of the nervous system, but suspension NPCs had a larger potential to generate neurons than adherently grown NPCs. Signaling cascades involved in this process were p38 and Erk1/2 mediated. Long-term expanded NPCs did not have the potential to generate neuronal sub-types. Importantly, they did not generate dopaminergic neurons. Mouse fetal NPCs from three different developmental stages (E10, E12, and E14) were employed but were not able to differentiate into dopaminergic neurons using factors known to stimulate in vitro dopaminergic specification. When cultivated in vitro for short periods, fetal mesencephalic NPCs were able to generate dopaminergic neurons. By eliminating all primary Th- positive neurons, FACS-sorting of NPCs proved a de novo generation of dopaminergic neurons, because after cultivation and differentiation of Th- depleted cell solutions dopaminergic neurons were present in the culture. However, these newly generated neurons failed to incorporate BrdU, making a generation without cell division from precursors probable. The precursor population of short cultures differed from long-term expanded cultures suggesting an ‘aging’ effect of in vitro conditions. IL-1 was a potent inducer of the dopaminergic neuronal phenotype in short-term expanded in vitro cultures and was expressed in vitro as well as in vivo at E14. Several important conclusions concerning fetal mouse stem cell behavior could be drawn from the results of this work: Firstly, the results showed for the first time that in fetal mouse mesencephalic NPCs dopaminergic neurons differentiate from precursors without cell division, therefore consuming those progenitors. Therein fetal mouse NPCs differ significantly from rat and human NPCs or respond differently to the same in vitro conditions that need to be optimized for fetal mouse NPCs. Secondly, less committed precursors find appropriate conditions to proliferate but not to generate the more committed DA precursors that are able to generate dopaminergic neurons. The hallmarks of stem cells, self-renewal and multipotentiality, seem to be part of a delicate balance, that, when unsettled, goes in favor of one side without the possibility of returning to the previous status. Further research should focus on two coherent issues: the isolation of more pure populations of progenitors and the more precise characterization of progenitor populations to find out which in vitro conditions need to be provided to keep the balance between proliferation and differentiation potential. The knowledge gained about stem cells this way would help establish cell sources for transplantation strategies. / Stammzellen sind ein wichtiges Werkzeug für regenerative Therapien im Bereich der neurodegenerativen Erkrankungen wie der Parkinson’schen Erkrankung. Ein besonderer Vorteil von Stammzellen gegenüber dem bereits zur Transplantation verwendeten Primärgewebe, ist ihre Fähigkeit zur fortlaufenden Zellteilung, so dass ausreichende Mengen zur Transplantation zur Verfügung stehen. Der Vorteil von fetalen neuralen Stammzellen (fNSZ) ist ihre genomische Stabilität, die dazu führt, dass bei Transplantationen keine Tumore entstehen. Dennoch ist der Großteil ihrer Eigenschaften und Potentiale noch unbekannt und die optimalen Wachstumsbedingungen für eine lange in vitro Kultur und optimale Differenzierung in dopaminerge Neuronen müssen erforscht werden, um bessere Transplantate herzustellen. Insbesondere Stammzellen der Maus sind für die Forschung von immenser Wichtigkeit, da sie die Arbeit mit transgenen Tieren ermöglichen. Die Zielsetzungen dieser Arbeit waren die Charakterisierung der fNSZ der Maus, die Langzeitexpansion und die anschließende Differenzierung in dopaminerge Neurone. Die Signalkaskaden der frühen Differenzierung und die Unterschiede von kurz- und langzeitkultivierten Stammzellen wurden untersucht. Es konnte gezeigt werden, dass fNSZ der Maus nach Langzeitkultivierung in alle Zelltypen des zentralen Nervensystems, also Neuronen und Glia differenzieren und die dabei aktivierten Signalkaskaden p38 und Erk1/2 vermittelt sind. Das Differenzierungspotential zu neuronalen Subtypen (also auch zu dopaminergen Nervenzellen) verloren diese fetalen Stammzellen unter Kulturbedingungen schnell. Das steht im Gegensatz zu fetalen Stammzellen aus Ratte oder dem Menschen, die auch nach langer Kultivierung ihr dopaminerge Potential erhalten. Nur nach Kurzzeitkultivierung waren dopaminerge Neurone nachzuweisen, die jedoch nicht durch Zellteilung aus Vorläuferzellen hervorgegangen waren. Die Eliminierung aller primären Neurone aus der Mittelhirnisolation durch FACS-sorting von Th-Gfp transgenen Mäusen bewies die de novo Generation der dopaminergen Neurone aus Vorläuferzellen ohne Zellteilung während der Kultivierung der Stammzellen. Diese Ergebnisse zeigten, dass in fetalen mesenzephalen NSZ der Maus dopaminerge Neurone von spezialisierten Vorläuferzellen differenzieren, wodurch diese der Kultur verloren gehen. Weniger spezialisierte Vorläuferzellen finden Bedingungen, die ihre Kultivierung ermöglichen, sind aber nicht in der Lage, spezifischere Vorläuferzellen zu bilden. Die Markenzeichen von Stammzellen, Selbsterneuerung (durch Zellteilung) und das Potential, die Zelltypen des Nervensystems zu generieren, scheinen fein balancierte Zustände zu sein, die bei einer Störung nicht wiederherzustellen sind. Die Ergebnisse dieses Projektes sind von großer Bedeutung für die Forschung zur Zellersatztherapie der Parkinson’schen Erkrankung, deren ultimatives Ziel es ist, eine sichere und verlässlich expandierbare Zellquelle zu etablieren, die fähig ist, in dopaminerge Neurone zu differenzieren. Solche Stammzellen würden Bemühungen um Transplantationsstrategien für neurodegenerative Erkrankungen unterstützen und vorantreiben.
5

The role of endogenous neural stem cells (eNSCs) in metabolic syndrome and aging

Nikolakopoulou, Polyxeni 11 March 2019 (has links)
Introduction The adult brain exhibits low regenerative ability. Stem cell-based transplantation approaches have been largely unsuccessful, due to the difficulty to recapitulate the complex cytoarchitecture of the central nervous system (CNS). eNSCs are a new therapeutic option as pharmacological activation and increase of their number in vivo is accompanied by powerful neuroprotection in various disease models. Hes3 is expressed in both proliferating and quiescent NSCs, which makes it a useful biomarker for NSC identification. Direct injections of insulin in the adult brain increase the number of eNSCs and promote rescue of injured neurons via a novel molecular mechanism, the STAT3-Ser/Hes3 Signaling Axis. This molecular pathway with the STAT3-Ser phosphorylation at its core regulates Hes3 and together they form a merging point for several signals including insulin receptor activation. Main aim and Hypothesis Beyond the brain, STAT3-Ser/Hes3 signaling regulates various plastic cell populations in other organs of the endocrine/neuroendocrine system. In the pancreas, Hes3 is expressed in islets cells and regulates their growth, regeneration, and insulin release. Hes3 is also expressed in mouse hypothalamic tanycytes, which are diet responsive cells and play a very crucial role for the communication between the brain and the endocrine system. Also, Hes3 is expressed in the adrenal gland (both in the cortex and medulla); cultured adrenal progenitors express Hes3 and various treatments that induce Hes3 expression promote their growth. Therefore, STAT3-Ser/Hes3 Signaling may be involved in tissue problems that result from metabolic dysfunction. Metabolic syndrome often results in diabetes (Type I, Type II) and insulin resistance, suggesting that eNSCs may be affected by the condition. There is evidence that obesity induces inflammatory reactions in the hypothalamus, leading to NSC loss. However, it is not clear if damage to NSCs is also directly linked to insulin signaling disruption. Results Our results show that various parameters affect Hes3 levels in the brain. Aging decreased Hes3 mRNA expression. Type I diabetes increased Hes3 expression. Type II diabetes decreased Hes3 expression. Thus, we conclude that eNSCs are modulated by diabetes in an age-dependent manner. We also investigated whether common medication for metabolic related dysfunction also affects Hes3 expression in the adult brain. Indeed, our results show that metformin decreases Hes3 expression in the mouse hypothalamus. To address whether metformin has a direct effect on NSCs we treated primary mouse fNSCs with metformin. Metformin decreases cell number, proliferation and affects cell morphology, giving a more differentiated appearance (large, flat cell body with wider projections). Hes3 expression increases significantly at 72 hours of treatment. The metformin result opens the question if the increase in the Hes3 expression is a direct effect of the signal transduction pathways activated by metformin or due to a stress reaction. To address this we treated NSCs with exendin-4, another diabetes drug that we previously showed to both elevate Hes3 expression and cell number using a mouse insulinoma cell line (MIN6). Exendin-4 increases fNSC cell number but it did not affect the morphology. Similar to metformin proliferation was not affected. Hes3 expression increased significantly at 72 hours of treatment as well. This result indicates the distinctive action of the drugs on the STAT3-Ser/Hes3 signaling pathway. Specifically it dissociates Hes3 levels from other cellular parameters. Importantly it shows that two common diabetes medications have very different effects on NSCs. Because Hes3 is strongly regulated by metabolic parameters and medication we addressed potential roles of Hes3 using an established Hes3 null mouse line. Hes3 null mice exhibit no obvious phenotypes under normal conditions. However, we previously showed that when stressed by chemical induced damage, they exhibit low regenerative potential in the pancreas and brain. To identify additional phenotypes, we performed a phenotypic analysis of the Hes3 null mouse line under normal diet and HFD conditions (which induced type II diabetes). We found mild phenotypes that relate to the nervous system, the immune system and metabolism. At the molecular level, Hes3 deletion affects the expression of other genes within the Hes superfamily in the adult mouse brain. However, we did not observe these molecular differences in the HFD condition, suggesting an interplay between metabolic parameters (possibly, circulating insulin) and the regulation of Hes/Hey genes in the brain. Our data suggest a broad range of roles for Hes3, particularly under abnormal conditions. Conclusions Our work establishes that multiple parameters of metabolic state as well as diabetes medication affect Hes3 expression in the brain. Metabolic syndrome is a risk factor for many neurological disorders such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis. It is important to understand at the molecular and cellular level how metabolic dysfunction affects the brain. Here, we introduced a new cellular biomarker and signaling component that is greatly regulated in metabolic dysfunction.:1 Introduction 18 1.1 The ''plastic brain'': Neural Stem Cells, progenitors and precursors 19 1.2 Functional adult neurogenesis 19 1.3 NSCs in conventional and nonconventional regions of the adult brain 20 1.4 Neurodegenerative diseases, cell replacement and endogenous NSCs 21 1.5 The STAT3-Ser/Hes3 signaling axis in NSCs 24 1.6 Beyond the brain: The STAT3-Ser/Hes3 signaling axis operates in plastic cells 27 1.6.1 STAT3-Ser/Hes3 Signaling Axis in the pancreatic islet 27 1.6.2 STAT3-Ser/Hes3 Signaling Axis in the adrenal cortex and medulla 28 1.6.3 STAT3-Ser/Hes3 Signaling Axis in tanycytes of the hypothalamus? 28 1.6.4 STAT3-Ser/Hes3 Signaling: A new molecular component of the neuroendocrine system? 29 1.7 Metabolic syndrome and neurological disease 31 1.7.1 Metabolic dysfunction and Alzheimer's disease 31 1.7.2 Metabolic dysfunction and Parkinson's disease 31 1.7.3 Metabolic dysfunction and Multiple Sclerosis 32 1.7.4 Metabolism and neurodegenerative disease: Are they connected? 32 1.8 Main Aim – Hypothesis 33 2 Materials and Methods 34 2.1 Animal experiments 34 2.1.1 Animal use authorization 34 2.1.2 Genotyping 34 2.1.3 In vivo models 36 2.1.4 In vivo metabolic Analyses 36 2.1.5 Nociception 37 2.1.6 Histology 38 2.1.7 PCR and Real-Time quantitative PCR (qPCR) 39 2.1.8 Western Blot 41 2.2 Mouse phenotyping 42 2.3 Neural stem cell cultures 43 2.3.1 Preparation – Coatings 43 2.3.2 Cell Isolation and Cell Culture 43 2.3.3 Pharmacological Manipulation (Metformin – Exendin-4) 43 2.4 Heat maps 44 2.5 Statistical analyses 44 3 Results 45 3.1 Hes3 is expressed in the mouse brain 46 3.2 Aging and diabetes models alter Hes3 in the brain 48 3.2.1 Hes3 expression decreases with age 48 3.2.2 Pancreatic islet damage by streptozotocin increases Hes3 expression in the brain 48 3.2.3 High Fat Diet reduces Hes3 expression in the brain 49 3.3 Common diabetes medication affect neural stem cells (NSCs) in the brain 53 3.3.1 Metformin decreases Hes3 expression in the brain 53 3.3.2 Metformin opposes growth but increases Hes3 expression in cultured NSCs 54 3.3.3 Exendin-4 promotes growth and increases Hes3 expression in cultured NSCs 54 3.3.4 Metformin and Exendin-4 affect the STAT3-Ser/Hes3 signaling axis 59 3.4 Hes3 null mice exhibit a quasi-normal phenotype 60 3.4.1 Phenotypic Analysis - Normal Diet (ND) 60 3.4.2 Metabolism Relevant Phenotypes – HFD challenge 63 3.4.3 Phenotypic Analysis – Molecular 67 4 DISCUSSION 70 4.1 Diabetes affects the brain 71 4.2 STAT3-Ser/Hes3: a putative mediator 71 4.3 Hes3 is a special member of the Hes/Hey gene family 72 4.4 Patterns of Hes3 expression may be specific to cell type and microenvironment 72 4.5 Metabolic dysfunction and diabetes medication affect brain Hes3 73 4.5.1 Age regulates Hes3 73 4.5.2 Diabetes models regulate Hes3 expression in the brain 74 4.5.3 Metformin regulates Hes3 expression in the brain 74 4.6 Hes3 phenotyping provides clues to Hes3 functions 76 4.7 Hes3 and metabolic dysfunction: Are they connected? 77 5 Conclusions and Future Remarks 79 References 81
6

Investigating the role of cell-autonomous ROS status in the regulation of hippocampal neural precursor cells in adult mice

Adusumilli, Vijaya 16 November 2020 (has links)
Adult hippocampal neurogenesis entails a continued recruitment of neural precursor cells (NPCs) into active cell cycle and their progressive transition into post-mitotic granule cells. These adult born neurons integrate into the existing circuitry and confer structural plasticity, which aids in key hippocampal functions. For sustained neurogenesis, the cell cycle entry of the NPCs has to be tightly controlled. Environmental cues strongly, and differentially, regulate this checkpoint. Voluntary physical activity represents such an established strong stimulus that results in enhanced proliferation within the neurogenic niche. However, mechanistic insights into the maintenance and regulation of quiescence and the responsiveness of the NPCs to acute physical activity, as a form of adaptive neurogenesis, are yet to be elucidated. In my doctoral studies, we identified redox regulation as a key pathway regulating the cellular state equilibrium. I further explored the role of cellular oxidative stress in the neurogenic course and in adaptive neurogenic responses. Our results show that non-proliferative precursors within the hippocampal dentate gyrus, unlike in other stem cell systems, are marked by high levels of cellular reactive oxygen species (ROS). Using cytometric methodologies, ex vivo bioassays and transcriptional profiling, we revealed that classifying cells based on intracellular ROS content identified functionally defined sub-populations of adult NPCs. We propose that a drop in intracellular ROS content precedes the transition of cellular states, specifically from quiescence to active proliferation. Acute physical activity involves the activation of non- proliferating cells through a transient Nox2-dependent ROS surge in high-ROS, quiescent NPCs. In the absence of Nox2, baseline neurogenesis was unaffected, but the activity- dependent response was abolished. These findings shed new light on the discrete cellular events, which maintain the homeostasis between distinct cellular states of NPCs within the adult murine hippocampus.:Zusammenfassung 3 Summary 4 Acknowledgements 5 Index 8 List of figures 10 List of tables 11 Abbreviations 12 Publications 14 Introduction 15 Adult hippocampal neurogenesis 16 Adult subventricular neurogenesis 21 Methods to study adult neurogenesis 23 Environmental regulation of neurogenesis 26 Redox regulation in a stem cell 29 Working hypothesis 31 Specific aims 31 Materials and methods 32 Mice 34 Physical activity paradigm 35 Thymidine labelling and tissue preparation 35 Fluorescence immunohistochemistry 35 DG and SVZ dissection and dissociation 36 Flow cytometry 36 Gating for ROS classes 36 Neurosphere culture 37 Generation of monolayer culture 37 Inducing quiescence through BMP4 treatment 38 Next Generation sequencing (NGS) 38 RNA extraction 38 Quality control and differential expression 39 Functional enrichment and expression profiles 41 RNA isolation and quantitative RTPCR (qRT-PCR) 43 Ki67 immunochemistry and quantification of in vivo proliferation 45 Quantification and statistical analysis 46 Data and software availability 48 Results 49 Intracellular ROS content functionally delineates subpopulations of neural precursor cells 49 Resolution of ROS profiles of DG and SVZ and neurosphere bioassay 49 Distribution of Nes-GFP cells into different ROS classes 54 Neural precursors of the different ROS classes have distinct molecular profiles 55 Changes in intracellular ROS content precede cell fate changes 65 ROS profiling of other cell types within the DG 70 ROS profiling of Astrocytes and type-1 cells 70 ROS profiling of Doublecortin (Dcx)positive cells of the neurogenic lineage 74 ROS profiling of microglial cells within the DG 77 Resolving the response of Nes-GFP subpopulations to environmental stimulus 78 Nes-GFP+ cells of the hiROS class specifically respond to physical activity 81 Changes in ROS content are not driven by mitochondrial activity 83 In vitro monolayer culture of NPCs as an independent corroboration 86 Discussion 89 The organization of an active stem cell niche with respect to redox content 89 Cytometric classification of cells within the DG 91 Establishing the cellular states of redox defined subsets of Nes-GFP+ adult precursors within the DG 95 Timeline of baseline proliferation within precursors and identifying the subset of precursors responsive to de novo physical activity 97 Monolayer culture to study cellular states and redox regulation 100 Nox2 dependency as a discriminatory feature of adaptive neurogenesis 101 Conclusion 103 References 104 Declarations 122 Anlage 1 122 Anlage 2 124
7

Etablierung und Validierung eines Meerschweinchenmodells für die (humane) kongenitale Toxoplasmose

Grochow, Thomas 27 October 2023 (has links)
Die kongenitale Toxoplasmose kann zu schwerwiegenden Folgen für einen Fötus führen. In dieser Dissertation wird erstmals ein geeignetes Tierversuchsmodell in Form des Meerschweinchens etabliert. Anhand dessen konnten die pathologischen Alterationen als eine Folge von einer durch den Parasiten verursachte Reduktion von Neuronen und neuralen Stammzellen zurückgeführt werden.
8

Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics

Park, Deric M., Jung, Jinkyu, Masjkur, Jimmy, Makrogkikas, Stylianos, Ebermann, Doreen, Saha, Sarama, Rogliano, Roberta, Paolillo, Nicoletta, Pacioni, Simone, McKay, Ron D., Poser, Steve, Androutsellis-Theotokis, Andreas 28 November 2013 (has links) (PDF)
Tumors exhibit complex organization and contain a variety of cell populations. The realization that the regenerative properties of a tumor may be largely confined to a cell subpopulation (cancer stem cell) is driving a new era of anti-cancer research. Cancer stem cells from Glioblastoma Multiforme tumors express markers that are also expressed in non-cancerous neural stem cells, including nestin and Sox2. We previously showed that the transcription factor Hes3 is a marker of neural stem cells, and that its expression is inhibited by JAK activity. Here we show that Hes3 is also expressed in cultures from glioblastoma multiforme which express neural stem cell markers, can differentiate into neurons and glia, and can recapitulate the tumor of origin when transplanted into immunocompromised mice. Similar to observations in neural stem cells, JAK inhibits Hes3 expression. Hes3 RNA interference reduces the number of cultured glioblastoma cells suggesting a novel therapeutic strategy.
9

Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics

Park, Deric M., Jung, Jinkyu, Masjkur, Jimmy, Makrogkikas, Stylianos, Ebermann, Doreen, Saha, Sarama, Rogliano, Roberta, Paolillo, Nicoletta, Pacioni, Simone, McKay, Ron D., Poser, Steve, Androutsellis-Theotokis, Andreas 28 November 2013 (has links)
Tumors exhibit complex organization and contain a variety of cell populations. The realization that the regenerative properties of a tumor may be largely confined to a cell subpopulation (cancer stem cell) is driving a new era of anti-cancer research. Cancer stem cells from Glioblastoma Multiforme tumors express markers that are also expressed in non-cancerous neural stem cells, including nestin and Sox2. We previously showed that the transcription factor Hes3 is a marker of neural stem cells, and that its expression is inhibited by JAK activity. Here we show that Hes3 is also expressed in cultures from glioblastoma multiforme which express neural stem cell markers, can differentiate into neurons and glia, and can recapitulate the tumor of origin when transplanted into immunocompromised mice. Similar to observations in neural stem cells, JAK inhibits Hes3 expression. Hes3 RNA interference reduces the number of cultured glioblastoma cells suggesting a novel therapeutic strategy.

Page generated in 0.0534 seconds