Spelling suggestions: "subject:"neurometabolischen kontextintegration"" "subject:"neurometabolischen migrantintegration""
1 |
Neural-Symbolic Integration / Neuro-Symbolische IntegrationBader, Sebastian 15 December 2009 (has links) (PDF)
In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them.
Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.
|
2 |
Neural-Symbolic IntegrationBader, Sebastian 05 October 2009 (has links)
In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them.
Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.
|
3 |
Evaluation Functions in General Game PlayingMichulke, Daniel 24 July 2012 (has links) (PDF)
While in traditional computer game playing agents were designed solely for the purpose of playing one single game, General Game Playing is concerned with agents capable of playing classes of games. Given the game's rules and a few minutes time, the agent is supposed to play any game of the class and eventually win it.
Since the game is unknown beforehand, previously optimized data structures or human-provided features are not applicable. Instead, the agent must derive a strategy on its own.
One approach to obtain such a strategy is to analyze the game rules and create a state evaluation function that can be subsequently used to direct the agent to promising states in the match.
In this thesis we will discuss existing methods and present a general approach on how to construct such an evaluation function.
Each topic is discussed in a modular fashion and evaluated along the lines of quality and efficiency, resulting in a strong agent.
|
4 |
Evaluation Functions in General Game PlayingMichulke, Daniel 22 June 2012 (has links)
While in traditional computer game playing agents were designed solely for the purpose of playing one single game, General Game Playing is concerned with agents capable of playing classes of games. Given the game's rules and a few minutes time, the agent is supposed to play any game of the class and eventually win it.
Since the game is unknown beforehand, previously optimized data structures or human-provided features are not applicable. Instead, the agent must derive a strategy on its own.
One approach to obtain such a strategy is to analyze the game rules and create a state evaluation function that can be subsequently used to direct the agent to promising states in the match.
In this thesis we will discuss existing methods and present a general approach on how to construct such an evaluation function.
Each topic is discussed in a modular fashion and evaluated along the lines of quality and efficiency, resulting in a strong agent.:Introduction
Game Playing
Evaluation Functions I - Aggregation
Evaluation Functions II - Features
General Evaluation
Related Work
Discussion
|
Page generated in 0.0951 seconds