Spelling suggestions: "subject:"neurofuzzy atemsystem"" "subject:"neurofuzzy systsystem""
11 |
Abordagem neurofuzzy para previsão de demanda de energia elétrica no curtíssimo prazo / Neurofuzzy approach for very-short term load demand forecastingLuciano Carli Moreira de Andrade 03 August 2010 (has links)
Uma vez que sistemas de inferência neuro-fuzzy adaptativos são aproximadores universais que podem ser usados em aplicações de aproximação de funções e de previsão, este trabalho tem por objetivo determinar seus melhores parâmetros e suas melhores arquiteturas com o propósito de se executar previsão de demanda de energia elétrica no curtíssimo prazo em subestações de distribuição. Isto pode possibilitar o desenvolvimento de controles automáticos de carga mais eficientes para sistemas elétricos de potência. As entradas do sistema são séries temporais de demanda de energia elétrica, compostas por dados mensurados em intervalos de cinco minutos ao longo de sete dias em subestações localizadas em cidades do interior do estado de São Paulo. Diversas configurações de entrada e diferentes arquiteturas foram examinadas para se fazer a previsão de um passo a frente. Os resultados do sistema de inferência neuro-fuzzy adaptativo frente às abordagens encontradas na literatura foram promissores. / Since adaptive neuro-fuzzy inference systems are universal approximators that can be used in functions approximation and forecasting applications, this work has the objective to determine their best parameters and best architectures with the purpose to execute very short term load forecasting in distribution substations. This can allow the development of more efficient load automatic control for power systems. The system inputs are load demand time series, which are composed of data measured at each five minutes interval, during seven days, from substations located in cities from São Paulo state countryside. Several input configurations and different architectures were examined to make a prediction aiming one step forecasting. The adaptive neuro-fuzzy inference system results in comparison with other approaches found in literature were promising.
|
12 |
Type-2 Neuro-Fuzzy System Modeling with Hybrid Learning AlgorithmYeh, Chi-Yuan 19 July 2011 (has links)
We propose a novel approach for building a type-2 neuro-fuzzy system from a given set of input-output training data. For an input pattern, a corresponding crisp output of the system is obtained by combining the inferred results of all the rules into a type-2 fuzzy set which is then defuzzified by applying a type reduction algorithm. Karnik and Mendel proposed an algorithm, called KM algorithm, to compute the centroid of an interval type-2 fuzzy set efficiently. Based on this algorithm, Liu developed a centroid type-reduction strategy to do type reduction for type-2 fuzzy sets. A type-2 fuzzy set is decomposed into a collection of interval type-2 fuzzy sets by £\-cuts. Then the KM algorithm is called for each interval type-2 fuzzy set iteratively. However, the initialization of the switch point in each application of the KM algorithm is not a good one. In this thesis, we present an improvement to Liu's algorithm. We employ the result previously obtained to construct the starting values in the current application of the KM algorithm. Convergence in each iteration except the first one can then speed up and type reduction for type-2 fuzzy sets can be done faster. The efficiency of the improved algorithm is analyzed mathematically and demonstrated by experimental results.
Constructing a type-2 neuro-fuzzy system involves two major phases, structure identification and parameter identification. We propose a method which incorporates self-constructing fuzzy clustering algorithm and a SVD-based least squares estimator for structure identification of type-2 neuro-fuzzy modeling. The self-constructing fuzzy clustering method is used to partition the training data set into clusters through input-similarity and output-similarity tests. The membership function associated with each cluster is defined with the mean and deviation of the data points included in the cluster. Then applying SVD-based least squares estimator, a type-2 fuzzy TSK IF-THEN rule is derived from each cluster to form a fuzzy rule base. After that a fuzzy neural network is constructed. In the parameter identification phase, the parameters associated with the rules are then refined through learning. We propose a hybrid learning algorithm which incorporates particle swarm optimization and a SVD-based least squares estimator to refine the antecedent parameters and the consequent parameters, respectively. We demonstrate the effectiveness of our proposed approach in constructing type-2 neuro-fuzzy systems by showing the results for two nonlinear functions and two real-world benchmark datasets. Besides, we use the proposed approach to construct a type-2 neuro-fuzzy system to forecast the daily Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). Experimental results show that our forecasting system performs better than other methods.
|
13 |
Elaboração de um analisador virtual utilizando sistema híbrido neuro-fuzzy para inferir a composição num processo de destilaçãoMorais Júnior, Arioston Araújo de 30 March 2011 (has links)
This work describes a procedure for a soft sensor design to predict the top composition of a methanol-water distillation column. Soft sensor is a mathematical model that is used to estimate variables of interest from secondary variables easy to measure. This technique comes from an operational difficulty or high cost obtaining the desired variable. The approach to build a soft sensor was an artificial intelligence modeling, a black-box type, using a hybrid neuro-fuzzy technique. The data acquisition to train and validate the soft sensor comes from a mathematical model validated from pilot plat data. One of the limitations of neuro-fuzzy system is that it works with a limited number of inputs, depending on the combinatorial explosion of fuzzy rules. To minimize these effects and to reduce the number of rules in the training data sets of virtual analyzer, a data clustering technique called substractive clustering was used. To obtain a better performance of soft sensor for the dynamic process, distillation column, a regression of lone sampling time in selected variables was used, changing the number of entries from 9 to 18 variables, nine variables at actual sampling time and nine variables at previous sampling time. The distillation column is a good process for the present study because composition measurements are the main objective of this process and are difficult to obtain. The computational strategy for a soft sensor design produced good results in estimating the top composition of the methanol-water distillation column. / Este trabalho descreve um procedimento para o desenvolvimento de um analisador virtual, para predição da composição de topo de uma coluna destilação metanol-água em uma planta piloto. Analisador virtual é um modelo matemático que é usado para estimar variáveis de interesse a partir de variáveis secundárias de fácil medição. Esta tecnologia surge de uma real dificuldade operacional ou do alto custo de obtenção da variável desejada. O modelo utilizado nesta abordagem de construção do analisador virtual utiliza técnicas de sistemas inteligentes, tipo caixa preta, através da técnica híbrida neuro-fuzzy. A aquisição dos dados para treinar e validar o analisador virtual foi feita através de um modelo matemático validado a partir de dados experimentais da planta piloto. Uma das limitações do sistema neuro-fuzzy é que ele trabalha com um número limitado de entradas, dependendo da explosão combinatória das regras fuzzy. Para minimizar estes efeitos e conseguir reduzir o número de regras nos conjuntos de treinamento da rede neuro-fuzzy, foi utilizada a técnica de agrupamento de dados, denominada agrupamento substrativo. Com a intenção de se obter um melhor desempenho do analisador virtual no processo dinâmico, que é a coluna de destilação, foi empregada uma regressão de um tempo de amostragem nas variáveis de entrada selecionadas, alterando o número de entradas de 9 para 18, sendo 9 variáveis no tempo de amostragem atual e 9 variáveis em um tempo de amostragem anterior. O processo de destilação mostrou-se adequado para o presente estudo, pois as medições de composições são de difíceis obtenções. A estratégia computacional para um projeto de analisador virtual produziu bons resultados, de forma a estimar a composição do topo da coluna de destilação binária metanol-água.
|
14 |
Avaliação da qualidade da água bruta superficial das barragens de Bita e Utinga de Suape aplicando estatística e sistemas inteligentesSILVA, Ana Maria Ribeiro Bastos da 30 January 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-15T12:20:57Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese SILVA AMRB.pdf: 10197611 bytes, checksum: dfa95dac75e87b0ffef8a344cb8d9996 (MD5) / Made available in DSpace on 2016-07-15T12:20:57Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese SILVA AMRB.pdf: 10197611 bytes, checksum: dfa95dac75e87b0ffef8a344cb8d9996 (MD5)
Previous issue date: 2015-01-30 / CNPq / Petrobrás / A aplicação de técnicas de Análises de Componentes Principais (ACP), Redes
Neurais Artificiais (RNA), Lógica Fuzzy e Sistema Neurofuzzy para investigar as
alterações da característica da água das barragens de Utinga e do Bita que
abastecem de água bruta a ETA Suape é de fundamental importância em função do
grande número de variáveis utilizadas para definir a qualidade. Neste trabalho, foram
realizadas 10 coletas de água em cada área, no período de novembro de 2007 a
agosto de 2012, totalizando 120 amostras. Ainda que o conjunto de dados
experimentais obtidos seja reduzido, houve múltiplos esforços em demanda da
aquisição de informações da qualidade da água junto aos órgãos oficiais de
monitoramento ambiental. Os resultados mostraram uma tendência à degradação da
propriedade da água das barragens em decorrência da presença de
microrganismos, sais e nutrientes, responsáveis pelo processo de eutrofização, o
que se configurou pela maior concentração de fósforo total, Coliformes
termotolerantes, e diminuição de pH e OD, provavelmente devido à ocorrência de
descarte de efluentes da agroindústria canavieira, industrial e doméstico. A ACP
caracterizou mais 76% das amostras permitindo visualizar a existência de mudanças
sazonais e uma pequena variação espacial d`água nas barragens. A condição da
água das duas barragens foi modelada satisfatoriamente, razoável precisão e
confiabilidade com os modelos estatístico e computacionais, para uma quantidade
de parâmetros e dados ambientais, que embora limitados foram suficientes para
realização deste trabalho. Ainda assim, fica evidente a eficiência e sucesso da
utilização do Sistema Neurofuzzy (coeficiente de regressão de 0,608 a 0,925) que
combina as vantagens das Redes Neurais e da Lógica Fuzzy em modelar o conjunto
de dados da qualidade da água das barragens de Utinga e Bita. / The application of techniques such as the Principal Components Analysis (PCAs),
Artificial Neural Networks (ANNs), Fuzzy Logic and Neuro-fuzzy Systems for
investigating the changes in the water quality characteristics in the Utinga and Bita
dams, which supplies raw water to the Suape Wastewater Treatment Plant (WWP), is
of great importance due to the high number of variables used to define water quality.
In this work were collected 10 water samples used to define water quality, in a period
ranging from November 2007 to August 2012, with a total of 120 samples. Although
the experimental dataset was limited, there were multiple efforts in gathering
information from the Environmental Control Agencies. The results showed a
tendency of degradation of the water properties in the dams studied due to the
presence of microorganisms, salts and nutrients, responsible for the eutrophication
process; result of the higher concentration of total phosphorus, Thermotolerant
Coliforms and decrease in pH and DO, probably from the discharge of the sugarcane
agroindustry and domestic waste. The PCAs characterised more than 76% of the
samples collected, and consequently observing the existence of seasonal changes
and small spatial variation of water levels in the dams. The water quality conditions in
both dams were satisfactorily modelled, obtaining a reasonable precision and
statistical and computational reliability for a certain amount of parameters and
environmental data that, even though considered limited, were enough to run this
trial. Nonetheless, it becomes evident the efficiency and success in using the Neuro-
Fuzzy System (regression coefficient of 0.608 to 0.925), which combines the
advantages of both the Neural Networks and Fuzzy Logic in modelling the water
quality dataset in the Utinga and Bita dams.
|
15 |
Quantifizierung von Unsicherheiten in auftragsbezogenen ProduktionsnetzenZschorn, Lars 13 December 2007 (has links)
Die zuverlässige Einhaltung von Lieferzusagen stellt ein wichtiges Kriterium bei der Auswahl der Teilnehmer eines auftragsbezogenen Produktionsnetzes dar. Für die objektive Bewertung der Lieferzuverlässigkeit der potenziellen Netzwerkteilnehmer bedarf es der Quantifizierung der relevanten Unsicherheiten integriert in einen allgemein gültigen Ansatz der Verfügbarkeitsprüfung. Die Arbeit stellt daraus resultierend Ansätze zur Berechnung der Unsicherheit vor. Durch die Quantifizierung der Unsicherheit innerhalb der Unternehmen ergibt sich zudem die Möglichkeit der flexiblen, situationsabhängigen Nutzung des für langfristige Rahmenverträge reservierten Sicherheitsbestandes zur Befriedigung kurzfristiger Anfragen. Diese Aufgabe unterstützt ein konfigurierbares Modell zur Entscheidungsunterstützung, das auf einem Neuro-Fuzzy-System basiert.
Die Kennzahlen der Lieferzuverlässigkeit unterliegen einem dynamischen Verhalten während des Wertschöpfungsprozesses in dem auftragsbasierten Produktionsnetz. Durch die Integration dieser Kennzahlen in das Management dieses Prozesses ergibt sich die Möglichkeit, aus der Zunahme der Unsicherheit mögliche Störungen und deren Auswirkungen bereits vor ihrem Eintreten zu erfassen und im Rahmen eines präventiven Störungsmanagements zu agieren.
|
16 |
Towards Structural Health Monitoring of Gossamer Structures Using Conductive Polymer Nanocomposite SensorsSunny, Mohammed Rabius 14 September 2010 (has links)
The aim of this research is to calibrate conductive polymer nanocomposite materials for large strain sensing and develop a structural health monitoring algorithm for gossamer structures by using nanocomposites as strain sensors. Any health monitoring system works on the principle of sensing the response (strain, acceleration etc.) of the structure to an external excitation and analyzing the response to find out the location and the extent of the damage in the structure. A sensor network, a mathematical model of the structure, and a damage detection algorithm are necessary components of a structural health monitoring system. In normal operating conditions, a gossamer structure can experience normal strain as high as 50%. But presently available sensors can measure strain up to 10% only, as traditional strain sensor materials do not show low elastic modulus and high electrical conductivity simultaneously. Conductive polymer nanocomposite which can be stretched like rubber (up to 200%) and has high electrical conductivity (sheet resistance 100 Ohm/sq.) can be a possible large strain sensor material. But these materials show hysteresis and relaxation in the variation of electrical properties with mechanical strain. It makes the calibration of these materials difficult. We have carried out experiments on conductive polymer nanocomposite sensors to study the variation of electrical resistance with time dependent strain. Two mathematical models, based on the modified fractional calculus and the Preisach approaches, have been developed to model the variation of electrical resistance with strain in a conductive polymer. After that, a compensator based on a modified Preisach model has been developed. The compensator removes the effect of hysteresis and relaxation from the output (electrical resistance) obtained from the conductive polymer nanocomposite sensor. This helps in calibrating the material for its use in large strain sensing. Efficiency of both the mathematical models and the compensator has been shown by comparison of their results with the experimental data. A prestressed square membrane has been considered as an example structure for structural health monitoring. Finite element analysis using ABAQUS has been carried out to determine the response of the membrane to an uniform transverse dynamic pressure for different damage conditions. A neuro-fuzzy system has been designed to solve the inverse problem of detecting damages in the structure from the strain history sensed at different points of the structure by a sensor that may have a significant hysteresis. Damage feature index vector determined by wavelet analysis of the strain history at different points of the structure are taken by the neuro-fuzzy system as input. The neuro-fuzzy system detects the location and extent of the damage from the damage feature index vector by using some fuzzy rules. Rules associated with the fuzzy system are determined by a neural network training algorithm using a training dataset, containing a set of known input and output (damage feature index vectors, location and extent of damage for different damage conditions). This model is validated by using the sets of input-output other than those which were used to train the neural network. / Ph. D.
|
17 |
Aplicação de sistemas neuro-fuzzy e evolução diferencial na modelagem e controle de veículo de duas rodas / Application of neuro-fuzzy systems and differential evolution in the modeling and control of a two-wheeled vehiclePereira, Bruno Luiz 25 August 2017 (has links)
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Esse trabalho propõe a modelagem e o controle neuro-fuzzy aplicados na estabilidade estática de um veículo de duas rodas do tipo pêndulo invertido, utilizando como método de otimização a evolução diferencial. Durante a fase de modelagem, determinam-se as incertezas relacionadas aos parâmetros e também à resposta do modelo neuro-fuzzy. Verifica-se que este é capaz de se ajustar satisfatoriamente aos dados extraídos experimentalmente do veículo. Na determinação do controlador neuro-fuzzy, testam-se três estratégias de ajuste de parâmetros, sendo duas delas propostas neste texto, e os resultados são comparados entre si e aos obtidos através de controladores clássicos, e verifica-se experimentalmente e por meio de testes estatísticos que as abordagens propostas apresentam grande capacidade de adaptação às restrições impostas à planta, garantindo a estabilidade estática e a eficiência energética do sistema. / This work proposes the neuro-fuzzy modeling and control applied to the static stability of a two-wheeled inverted pendulum vehicle, using differential evolution as optimization technique. During the modeling phase, the uncertainties related to the parameters and also to the neuro-fuzzy model response are determined. It is possible to verify that the neuro-fuzzy system is capable of satisfactorily adjusts to the data experimentally extracted from the vehicle. In the determination of the neuro-fuzzy controller, three strategies of parameter adjustment are tested, two of them being proposed in this text, and the results are compared between them and those obtained through classical controllers, and it is verified experimentally and through tests that the proposed approaches present a great capacity to adapt to the constraints imposed on the plant, guaranteeing the static stability and the energy efficiency of the system. / Dissertação (Mestrado)
|
Page generated in 0.067 seconds