• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 49
  • 43
  • 21
  • 10
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 332
  • 62
  • 55
  • 55
  • 46
  • 33
  • 31
  • 30
  • 30
  • 28
  • 28
  • 27
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Hypothyroïdie et processus neurodégénératifs associés à la maladie d’Alzheimer / Hypothyroïdism and Neurodegenerative Processes Associated with Alzheimer’s Disease

Chaalal, Amina 18 December 2014 (has links)
La maladie d’Alzheimer (MA) est une maladie multifactorielle et à ce jour aucune cause des formes sporadiques de la maladie, qui représente plus de 99% des cas, n’a été mise en évidence. Des données émergentes de la littérature suggèrent l’existence d’un lien entre les dysfonctionnements thyroïdiens et la MA. Dans ce contexte, l’objectif de cette étude était de préciser l’implication de l’hypothyroïdie dans les processus neuropathologiques de la MA. En utilisant un modèle de rats rendus hypothyroïdiens par un traitement au propylthiouracile (PTU), nous avons montré que l’hypothyroïdie favorise la mise en place de lésions caractéristiques de la MA dans l’hippocampe, structure du cerveau précocement altérée dans la maladie et qui joue un rôle crucial dans les processus de mémoire. Une étude d’IRM in vivo a révélé une diminution progressive du volume cérébral des rats hypothyroïdiens. Dans l’hippocampe, l’hypothyroïdie s’accompagne d’une augmentation de la production de peptides amyloïdes, d’une hyperphosphorylation de la protéine Tau et d’une augmentation de la libération de plusieurs cytokines pro-Inflammatoires. Ces lésions, caractéristiques de la MA, sont associées à des troubles de la mémoire spatiale à court et long terme et à une altération de deux voies de signalisation connues pour jouer un rôle important dans les processus de plasticité synaptique et de mémoire : la voie calcique et la voie ERK-MAPK. Afin d’évaluer le potentiel de restauration de ces lésions, une partie des rats hypothyroïdiens a reçu des injections intra-Péritonéales de triiodothyronine (T3), forme active des hormones thyroïdiennes. Nos résultats montrent que l’administration de T3 permet de restaurer les déficits de mémoire spatiale à court terme, mais pas à long terme. En outre, ce même traitement permet de restaurer les niveaux de cytokines pro-Inflammatoires, de peptides amyloïdes ainsi que les voies « calcique » et « ERK-MAPK ». Ces données renforcent l’existence d’un lien entre l’hypothyroïdie et la MA : elles suggèrent que l’hypothyroïdie pourrait représenter un facteur important pouvant impacter le risque de développer des formes sporadiques de la MA. / Alzheimer’s disease (AD) is a multifactorial disease and to date no single cause for the sporadic forms, which accounts for over 99% of the cases, has been established. Converging evidence suggests a possible link between thyroid dysfunctions and AD. The aim of the present study was to explore the possibility that adult hypothyroidism represents an etiopathogenic mechanism of AD. In this context, using a hypothyroid rat model induced by propylthiouracil (PTU) treatment, we report that hypothyroidism is associated with several AD-Associated hallmarks in the hippocampus, a brain structure affected in early stages of AD and which plays a crucial role in memory processes. In vivo MRI revealed a progressive decrease in cerebral volume of hypothyroid-Rats. In the hippocampus, hypothyroidism resulted in Tau hyperphosphorylation, increased levels of amyloid peptide and of several pro-Inflammatory cytokines. These AD-Related pathological hallmarks were associated with impaired short- and long-Term spatial memory and alteration of hippocampal signalling pathways important for synaptic plasticity and memory, including calcium and ERK-MAPK pathways. To test the potential reversion of PTU-Induced lesions, we injected hypothyroid rats with triiodothyronine (T3), the active form of thyroid hormone. Our results show that intraperitoneal injections of T3 restored spatial short-Term, but not long-Term memory in hypothyroid-Treated rat. Furthermore, levels of pro-Inflammatory cytokines, amyloid peptide and of proteins involved in calcium and ERK-MAPK signalling were restored. These data strengthen the link between hypothyroidism and AD, supporting the idea that hypothyroidism may represent an important factor impacting the risk for developing sporadic forms of AD.
122

Longitudinal Changes in Astroglial and Inflammatory Markers in Patients with MCI and AD

Forsström, Karin January 2011 (has links)
Since neuroinflammation is present in patients with mild cognitive impairment (MCI) andAlzheimer's disease (AD) and since cholinesterase inhibitors increases the level ofacetylcholine, the aim was to investigate whether inflammatory markers of cholinoceptive cellsare affected in these patients. Near a biological hallmark of AD, amyloid plaque, activatedastrocytes and microglia can be found and higher levels of proinflammatory cytokines, i.e. IL-1β. To study the inflammatory response, proteins GFAP and S100B are used as CSF glialmarkers. IL-1β can bind to the membrane-bound IL-1 receptor or soluble sIL-1β-RII. When IL-1β binds to the soluble receptor instead of the membrane-bound receptor, no intracellular signalpropagation occur, thereby sIL-1βRII exerts an antagonistic effect and diminishedinflammatory responses. Thus a reduction in ratio of IL-1β to sIL-1RII levels may be indicativeof anti-inflammatory response. Available data on CSF GFAP, S100B, IL-1β and sIL-1β-RIIlevels in AD patients and MCI patients was used. MCI group were longitudinally followedafter start of treatment with a cholinesterase inhibitor (ChEI). AD group had data from baselineand after short-term treatment with a ChEI. The statistics application StatView was used toanalyse data. The activity of the cholinesterase enzymes, BuChE and AChE showed significantinhibition in the CSF of the MCI patients compared to baseline CSF GFAP level wassignificantly lower in MCI than AD patients at baseline. The levels of both GFAP and S100Bwere increased with time in MCI patients to comparable levels in the AD patients, indicative ofastroglial activation in MCI patients. However, the ratio of IL-1β to sIL-1RII showed alongitudinal reduction in the MCI patients after the treatment with the ChEIso that this ratiowas significantly higher in AD than in MCI patients. Thus despite the activation of astroglialcells in the treated MCI patients the proinflammatory effect of IL-1β was prevented byinduction of sIL-1βRII levels indicative of an anti-inflammatory outcome of treatment. Thisstudy suggests that proper activation of astroglial cells may have beneficial effect on ADpathogenesis, and conversion of MCI to AD. It also suggests that cholinesterase inhibitors may have an anti-inflammatory effect.
123

Implication fonctionnelle du récepteur P2X7 dans les mécanismes neuroinflammatoires associés à la dépression : étude préclinique / Functional implication of PLX7 receptors in neuroinflammatory phenomena associates with depression : a preclinical study

Farooq, Rai Khalid 17 December 2012 (has links)
Le projet de cette thèse s'est attaché à caractériser le rôle de l'IL-1 beta et les récepteurs P2X7 dans la dépression. Les résultats suggèrent que chez les souris stressés et les perturbation comportementaux, l'activation microgliales et endocriniennes sont reversées par l'antagoniste des P2X7Rs. Ces résultats mettent en évidence que l'antagoniste des récepteurs P2X7 a des effets comportementaux et neuroendocriniens. / Research work of this thesis was aimed to characterize role of IL-1 beta and P2X7 receptors in depressive illness. Results suggest that i stressed mice the behavioral and neurobiochemical changes are reversed by use of P2X7R antagonist. It is an evidence of antidepressant of these compounds.
124

ANIMAL Antidépresseurs, neuroinflammation et maladie d'alzheimer / Antidepressants, neuroinflammation and Alzheimer's disease

Gosselin, Thomas 02 September 2016 (has links)
Aujourd’hui, malgré la description des mécanismes à l’origine du développement de la dépression et de la MA, aucun traitement curatif n’existe pour ces pathologies suggérant l’implication d’un autre phénomène. L’un des processus retrouvé communément dans ces pathologies est la neuroinflammation. Or pour le moment, les essais cliniques entrepris dans la MA afin de réduire la neuroinflammation n’ont pas permis d’aboutir à une amélioration significative des symptômes. L’une des raisons de cet échec serait une mauvaise fenêtre thérapeutique qui aurait pour conséquence d’exacerber les effets délétères de la neuroinflammation. Ceci met en lumière la méconnaissance de la cinétique de la neuroinflammation dans la MA. Ainsi notre travail de thèse avait pour but, d’une part, d’étudier l’impact d’anti-inflammatoires comparativement à celui d’antidépresseur dans la dépression chez la souris, et d’autre part, d’étudier l’impact de l’utilisation d’antidépresseur et d’anti-inflammatoires dans un modèle murin de MA. / Today, despite the description of the mechanisms underlying the development of depression and AD (Alzheimer’s disease), no cure exists for these diseases suggesting the involvement of another phenomenon. One of the processes commonly found in these pathologies is neuroinflammation. However, clinical trials undertaken in the AD to reduce neuroinflammation have not led to a significant improvement of symptoms. One reason for this failure could be a bad therapeutic window which would result in the increase of deleterious effects of neuroinflammation. This highlights the lack of understanding of the kinetics of neuroinflammation in AD.
125

Neuroinflammation & Insulinorésistance : contribution au développement physiopathologique de la maladie d’Alzheimer / Neuroinflammation & Insulinoresistance : involvement in pathophysiological development of Alzheimer Disease

Marciniak, Elodie 14 December 2015 (has links)
La maladie d’Alzheimer (MA) est une maladie neurodégénérative caractérisée d’un point de vue anatomopathologique par une accumulation extracellulaire de peptides amyloïdes et d’une dégénérescence neurofibrillaire (DNF), résultant de l’agrégation intraneuronale de protéines Tau hyper-et-anormalement phosphorylées. D’autres déterminants sont également associés à la MA dont une neuroinflammation chronique et une insulinorésistance centrale qui contribueraient tous deux au développement des lésions ainsi qu’aux troubles synaptiques et mnésiques associés.La neuroinflammation observée dans la MA est caractérisée par une activation des cellules gliales, une infiltration lymphocytaire ainsi que par la libération de médiateurs inflammatoires solubles dont les chimiokines. Le CCL3 est une chimiokine hautement dérégulée dans le cerveau des patients de MA. Dans notre laboratoire, nous avons montré que dans un modèle de DNF, le CCL3 était le facteur pro-inflammatoire le plus affecté au niveau hippocampique laissant ouverte l’hypothèse d’un rôle dans les dysfonctions mnésiques associées à la pathologie Tau. Pour aborder cette question, nous avons précisément évalué l’impact du CCL3 sur le fonctionnement synaptique hippocampique et sur les fonctions mnésiques. Nos travaux montrent que l’application de CCL3 sur des tranches d’hippocampe entraine une diminution des activités basales ainsi que de la potentialisation à long terme (LTP) sans altérer le fonctionnement présynaptique ni la dépression synaptique à long terme (LTD). Par ailleurs, l’élévation intracérébrale de CCL3 par injections intracérébroventriculaires sub-chroniques affecte également la transmission synaptique basale et la LTP ainsi que la mémoire spatiale à court terme et la mémoire à long terme. La réversion de ces altérations par le Maraviroc permet de conclure que l’effet néfaste du CCL3 est dépendant du récepteur CCR5. Ainsi, ces travaux soulignent l’importance du CCL3 dans la physiopathologie de la MA, notamment en lien avec la DNF.L’insulinorésistance observée dans les cerveaux de patients atteints de la MA est connue pour favoriser le développement des lésions caractéristiques et est suggérée comme participant aux atteintes synaptiques et mnésiques. Cependant les causes de cette insulinorésistance centrale sont peu connues. Quelques études montrent que les oligomères d’Aβ, le diabète de type II ou même la neuroinflammation sont susceptibles de conduire à une insulinorésistance centrale. Néanmoins, à ce jour aucune relation n'a été établie avec la protéine Tau. La seconde partie de ce travail s’est attachée à étudier le rôle de la protéine Tau dans la régulation de la réponse centrale à l’insuline. Diverses expériences réalisées in vitro et in vivo montrent que la surexpression de la protéine Tau induit une augmentation de la sensibilité neuronale à l’insuline alors que la délétion de Tau aboutit à l’effet inverse. Cette régulation semble être liée à une interaction entre la protéine Tau et PTEN, une phospholipase inhibitrice de la signalisation de l’insuline. L’interaction entre Tau et PTEN réduirait l’activité de cette dernière, favorisant de ce fait l’action de l’insuline au niveau central. Par ailleurs, des données physiologiques indiquent que cette régulation de la signalisation centrale de l’insuline pourrait avoir une répercussion sur la régulation de l’homéostasie énergétique. En ce sens, la délétion de la protéine Tau induit une prise de poids, une hyperinsulinémie et une glucointolérance périphérique. Ces données proposent donc une nouvelle fonction de la protéine Tau dans la signalisation neuronale et le métabolisme. Cette perte de fonction dans la MA pourrait expliquer les mécanismes d’insulinorésistance centrale liés à la DNF.En conclusion, nos données mettent en évidence deux mécanismes liant la pathologie Tau aux atteintes mnésiques, l’un passant par la production de la chimiokine CCL3, l’autre impliquant une résistance neuronale à l’insuline. / Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by extracellular amyloid deposits and intraneuronal neurofibrillary tangles, made of aggregated and abnormally hyperphosphorylated Tau proteins. Other components are also involved in AD pathophysiology, including chronic neuroinflammation and central insulinoresistance that would contribute both to the development of Alzheimer lesions as well as associated synaptic and memory impairments.Neuroinflammation observed in AD is characterized by glial cell activation, lymphocyte infiltration, and the release of soluble inflammatory mediators including chemokines. CCL3 is a highly upregulated chemokine in the brain of AD patients. In our lab, we have shown, in a mouse model of Tau pathology, that hippocampal CCL3 was largely upregulated and, thus, we made the assumptions that such increase could play a key-role in the memory dysfunctions associated with Tau pathology. To address to this question, we precisely evaluated the impact of CCL3 upon hippocampal synaptic activity and memory function. Our data show that CCL3 application on hippocampal slices induces a significant decrease of basal synaptic activity and long term potentiation (LTP) impairment without affecting presynaptic activity and long term depression (LTD). Further, intracerebral elevation of CCL3 by sub-chronical intracerebroventricular injections was also found to impact hippocampal basal synaptic activity and LTP but also short term spatial memory and long term memory. Reversion of these alterations by Maraviroc finally suggests that CCL3 deleterious effects are CCR5 dependent. Overall, these studies show the important role of CCL3 towards plasticity and memory as well as in AD physiopathology.Besides chronic inflammation, insulinoresistance observed in AD brain is suggested to favor the development of amyloid and Tau lesions but also to participate to synaptic impairments underlying memory loss. However, origins of the brain insulinoresistance described in AD are unclear. Previous studies ascribed central insulin-resistance to Aβ oligomers, type II diabetes or even neuroinflammation. So far, no relationship has been established with Tau protein. The aim of the second part of the present thesis was evaluate the potential role of Tau protein towards the regulation of central insulin sensitivity. Various experiments performed in vitro and in vivo show that Tau favors the neuronal response to insulin, whereas Tau deletion favors insulin-resistance. This regulation seems to be related to an interaction between Tau and PTEN, a phospholipase inhibiting insulin signaling, which results in a reduced PTEN activity, itself favoring insulin pathway activation. Regulation of brain insulin signaling is known to modulate energy homeostasis, food intake and weight gain. In line with the idea that Tau protein modulates insulin signaling, we found that Tau deletion induces weight gain, hyperinsulinemia and glucointolerance. Together, these data provide a new function for Tau in the control of neuronal signaling and peripheral metabolism. These data also highlight that the loss of Tau function in AD might explain at last in part the central insulinoresistance described as “type 3 diabetes”.In conclusion, our data highlight two mechanisms linking Tau pathology and memory deficits, one through the detrimental effect of the chemokine CCL3 and the other involving neuronal insulin resistance.
126

Mort neuronale et maladies à prions / Neuronal death and prion diseases

Ragagnin, Audrey 11 December 2014 (has links)
La conversion conformationnelle de la protéine prion cellulaire PrPC neuroprotectrice en protéine prion PrPSc infectieuse et pathogène caractérise les maladies à prions. Dans le cerveau infecté par les prions, la perte de PrPC, le gain de PrPSc neurotoxique et l’inflammation concourent à la mort neuronale par des mécanismes encore mal connus.Ces travaux valident les cultures organotypiques de cervelet de souris comme système expérimental ex vivo favorable à l’étude de ces mécanismes et montrent que l’absence de PrPC aussi bien que PrPSc activent des mécanismes apoptotiques et autophagiques qui conduisent à la mort des cellules de Purkinje du cervelet. Une deuxième étude in situ chez la souris montre que la compartimentation anatomo-fonctionnelle du cervelet est un paramètre endogène de la pathogenèse des prions de tremblante 22L. Une troisième série d’expériences in situ montre que les prions provoquent l’augmentation du récepteur TNFR1 de la cytokine pro-inflammatoire TNF-α à la membrane des astrocytes enveloppant les synapses excitatrices des cellules de Purkinje dans le cortex cérébelleux de souris infectées. Ceci implique une composante astrocytaire dans la réaction des complexes synaptiques aux prions. / The conversion of the protective cellular prion protein PrPC into an infectious, neurotoxic conformer PrPSc is a feature of prion diseases. In the prion-diseased brain, the loss of PrPC, the production of pathogenic PrPSc and inflammation contribute to neuronal death by still unknown mechanisms.The present results validate cerebellar organotypic cultures as a valuable experimental system to study ex vivo these mechanisms and provide insight into the apoptotic and autophagic processes activated by the absence of PrPC in Prnp-deficient mice and by PrPSc prions and lead to the death of the cerebellar Purkinje cells. A second line of research in situ showed that the anatomo-functional compartmentation of the mouse cerebellum is an endogenous parameter of the pathogenesis of the 22L scrapie prions. Finally, another in situ approach revealed that prions increase the levels of TNFR1, a receptor for the pro-inflammatory cytokine TNF-α at the membrane of the astrocytes enveloping Purkinje cell excitatory synapses in the cerebellar cortex of infected mice. This implies that the response of synaptic complexes to prions involves a glial component.
127

Mécanismes de neurodégénérescence associés au processus inflammatoire dans la sclérose latérale amyotrophique / Neurodegenerative mechanisms associated with the inflammatory process in amyotrophic lateral sclerosis

Aebischer, Julianne 23 September 2011 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative incurable, qui touche les motoneurones de la moelle épinière et du cerveau. Elle se manifeste par une faiblesse musculaire qui évolue rapidement vers une paralysie générale, entrainant la mort du patient. Les principes moléculaires conduisant à la dégénérescence sélective des motoneurones demeurent encore mal connus, entravant le développement de nouvelles thérapies. Mon travail de thèse a permis l'identification d'une nouvelle voie de mort spécifique aux motoneurones, qui dépend du récepteur LT-βR et de son ligand LIGHT. De plus, cette voie de mort peut être déclenchée par une cytokine pro-inflammatoire, qui est l'interféron gamma (IFNγ). Nous avons pu montrer des signes d'activation de cette voie de mort chez des souris modèles de la SLA ainsi que dans les tissus de patients atteints de la maladie. En effet, on observe au cours de la maladie une augmentation des niveaux d'IFNγ dans les astrocytes et les motoneurones. Une approche génétique a par la suite permis de démontrer l'implication fonctionnelle de cette voie de mort dans le processus pathologique. / Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease affecting primarily motoneurons in the brain and spinal cord. Symptoms of the disease include general muscle weakness, rapidly evolving in an overall paralysis, leading to the death of the patient. The precise mechanisms responsible for the selective vulnerability of motoneurons remain largely unknown, impeding therefore the development of effective therapies. My thesis work led to the discovery of a novel motoneuron selective death pathway dependent on the activation of LT-βR by LIGHT. This death pathway might also be triggered by the pro-inflammatory cytokine interferon gamma (IFNγ). Interestingly, we have documented signs of activation of this pathway in ALS mice and sporadic ALS patients, with IFNγ being upregulated in astrocytes and motoneurons. Furthermore, a genetic approach has provided evidence of the functional involvement of this death pathway in the pathogenic process.
128

Imagerie par Résonance Magnétique des cellules phagocytaires cérébrales dans des modèles murins de neuroinflammation / Magnetic Resonance Imaging of cerebral phagocytic cells in mouse model of neuroinflammation

Hubert, Violaine 15 November 2019 (has links)
L’accident vasculaire cérébral ischémique (AVCi) est un enjeu majeur de santé publique. L’imagerie par résonance magnétique (IRM) est de plus en plus utilisée pour la prise en charge en urgence des patients, afin de sélectionner les patients candidats aux thérapies de reperfusion, seul traitement approuvé à ce jour. La découverte de nouvelles thérapeutiques constitue donc un véritable enjeu pour protéger le cerveau à la suite d’un AVCi. La piste des thérapeutiques anti-inflammatoires est particulièrement intéressante. En effet, il a été démontré que dans l’AVCi, l’inflammation cérébrale serait à l’origine d’une aggravation de la lésion ischémique. Il est maintenant admis que les cellules du système monocluée phagocytaire ont un rôle prédominant dans la cette réaction inflammatoire, contribuant dans certains cas aux dommages tissulaires. Plus récemment, il a également été démontré que les plexus choroïdes joueraient un rôle important dans le recrutement de cellules immunitaires au niveau de la lésion ischémique. Pour améliorer la compréhension de l’implication des cellules phagocytaires dans l’AVCi et dans les pathologies neuroinflammatoires en général, l’imagerie in vivo est un outil translationnel précieux. Au sein de notre équipe, la méthode non invasive d’IRM couplée à l’injection intraveineuse de nanoparticules d’oxyde de fer, les USPIOs, a été mise au point. Cette technique permet d’imager les cellules phagocytaires présentes au niveau de la lésion ischémique, suite à leur internalisation des USPIOs. Dans ce contexte, ma thèse s’est articulée autour des deux axes suivants : 1) Evaluer le potentiel d’une nouvelle nanoparticule multimodale, la « NanoGd », pour imager les cellules phagocytaires présentes au niveau de la lésion ischémique. Un protocole expérimental précis a été mis en place dans un modèle d’occlusion permanente de l’artère cérébrale moyenne chez la souris transgénique CX3CR1-GFP. L’originalité de notre étude repose sur le fait que ces souris ont été imagées in vivo avec des sessions d’IRM combinées à des sessions de microscopie biphotonique intravitale, nous permettant d’obtenir de précieuses informations sur les origines biologiques des signaux visualisés avec l’IRM. Nos résultats indiquent que l’imagerie multimodale de la NanoGd permettent d’imager in vivo les cellules phagocytaires à la suite d’un AVCi. 2) Evaluer le potentiel de notre technique d’IRM couplée à l’injection intraveineuse d’USPIOs comme outil pour imager in vivo l’implication des plexus choroïdes dans des phénomènes inflammatoires précoces. Pour cela, nous avons travaillé avec un modèle murin de neuroinflammation induite par injection intrapéritonéale de lipopolysaccharide. La présence des USPIOs au niveau des plexus choroïdes a été quantifiée sur les images IRM à l’aide d’un système de scoring multi-opérateurs, et comparée entre le groupe de souris LPS et le groupe contrôle. Nous avons montré que l’IRM couplée à l’injection iv d’USPIOs permettait de mettre en évidence in vivo les phénomènes inflammatoires à l’intérieur des plexus choroïdes. Cette étude sur l’imagerie in vivo de l’inflammation dans les plexus choroïdes fait suite à la rédaction d’une revue sur l’imagerie clinique des plexus choroïdes en conditions physiologiques et pathologiques. Nous avons montré que les plexus choroïdes sont impliqués de nombreuses manières dans le maintien de l’homéostasie cérébrale, et que bien qu’il s’agisse d’un domaine en pleine expansion, l’imagerie clinique de ces structures est encore largement insuffisante. Ce travail de thèse a donc permis de mettre au point et de valider deux approches d’imagerie in vivo pour l’étude de l’inflammation cérébrale, dans l’AVCi et les pathologies avec une composante neuroinflammatoire, et l’utilisation de ces méthodes dans des modèles souris de neuroinflammation a d’ores et déjà permis d’améliorer la compréhension des mécanismes inflammatoires dans ces pathologies / Stroke is a major public health issue. Magnetic resonance imaging (MRI) is increasingly used for the emergency management of these patients, during the interruption of blood flow to better select patients who are candidates for reperfusion therapies, the only treatment approved to date. The discovery of new therapeutics is therefore a real challenge to protect the brain following a stroke. Among the different lines of research, anti-inflammatory therapeutics are particularly interesting. Indeed, cerebral ischemia causes an inflammatory reaction and it has been shown that the runaway of this reaction would cause an aggravation of the cerebral lesions. Although the establishment of this inflammatory reaction is still to be characterized more precisely, significant progress has been made in this area. It is now recognized that cells of the phagocytic monoclonal system play a predominant role in the establishment and maintenance of this inflammatory response, contributing in some cases to tissue damage. More recently, it has also been shown that choroid plexuses play an important role in the recruitment of immune cells to the level of ischemic injury, including circulating monocytes/macrophages. To improve our understanding of phagocytic cells involvement in ischemic stroke and neuroinflammatory pathologies in general, in vivo imaging is a promising translational tool. In our team, the non-invasive MRI method coupled with the intravenous injection of iron oxide nanoparticles, the USPIOs, has been developed and validated through pre-clinical and clinical studies. This technique enables to image the phagocytic cells present at the level of the ischemic lesion, following their internalization of the USPIOs.In this context, my thesis was articulated around the following two axes:1) Evaluate the potential of a new multimodal nanoparticle composed with gadolinium fluoride, the "NanoGd", to image phagocytic cells present in the ischemic lesion. A precise experimental protocol was implemented in a model of permanent occlusion of the middle cerebral artery in CX3CR1-GFP transgenic mouse. The originality of our study rests on the fact that these mice were imaged in vivo with MRI sessions back-to-back with intravital two-photon microscopy sessions, allowing us to obtain valuable information on the biological origins of the signals visualized with the MRI. Our results indicate that multimodal imaging of NanoGd can be used to image phagocytic cells in vivo following ischemic stroke. 2) Evaluate the potential of USPIO-enhanced MRI as a tool to image in vivo the involvement of choroid plexuses in early inflammatory phenomena. For this, we worked with a mouse model of neuroinflammation induced by intraperitoneal injection of lipopolysaccharide. The presence of USPIOs at the level of the choroid plexuses was quantified on the MRI images using a multi-operator scoring system and compared between the LPS mouse group and the control group. We have shown with our study that the MRI coupled with the iv injection of USPIOs allowed to highlight in vivo the inflammatory phenomena inside the choroid plexuses. This study on in vivo imaging of inflammation in choroid plexuses followed the writing of a review about the clinical imaging of choroid plexuses in physiological and pathological conditions. In this study, we have shown that choroid plexuses are involved in many ways in maintaining cerebral homeostasis, and that although this is a rapidly expanding field, the clinical imaging of these structures is still largely insufficient. This work has allowed to develop and validate two in vivo imaging approaches for the study of brain inflammation, in stroke and pathologies with a neuroinflammatory component, and the use of these methods in mouse models of neuroinflammation has already made it possible to improve the understanding of inflammatory mechanisms in these pathologies
129

Synthèse de nouveaux ligands pour l'imagerie de la neuroinflammation par tomographie par émission de positons / Synthesis of novel ligands for neuroinflammation imaging using Positron Emission Tomography

Cacheux, Fanny 18 October 2016 (has links)
La neuroinflammation joue un rôle important dans de nombreuses maladies neurodégénératives telles que la maladie d’Alzheimer, Parkinson, ou encore la sclérose en plaques. De récents développements en imagerie moléculaire permettent aujourd’hui un meilleur diagnostique et un meilleur suivi thérapeutique de ces maladies. Parmi les techniques d’imagerie dont nous disposons actuellement, la Tomographie par Emission de Positions (TEP) et Tomographie par Emission Mono Photonique (TEMP) jouent un rôle important de par leur haute sensibilité et leurs aspects quantitatifs. L’objectif de ma thèse est de développer de nouveaux ligands et radioligands dédiés à l’imagerie de cibles spécifiques impliquées dans les processus de neuroinflammation. Pour ce faire, la TEP et ses émetteurs de positons à vie brève associés (notamment le fluor-18 ; T1/2 : 109.8 min) constituent un outil de choix. Le projet est divisé en deux sections principales. La première est dédiée au développement de ligands ciblant la protéine de Translocation 18 kDa (TSPO). Cette protéine est aujourd’hui reconnue comme un biomarqueur précoce des processus neuroinflammatoires, et de nombreux ligands ont déjà été synthétisés pour cette cible. Le plus anciens d’entre eux est le PK11195 appartenant à la famille des isoquinoléines, qui a été marqué au carbone-11 à la fin des années 80. Plus récemment, d’autres familles de composés ont vu le jour, et notamment la familles des pyrazolopyrimidines avec le [11C]DPA-713, ainsi que celle des pyridazinoindoles avec le [11C]SSR180575. A travers cette première partie de ma thèse, l’objectif est de synthétiser et de caractériser in vitro de nouveaux ligands dérivés des deux composés leaders de ces deux familles. Les précurseurs de marquage correspondant ont également été synthétisés pour les composés les plus prometteurs, permettant ainsi un radiomarquage au fluor-18. Certains résultats ont par ailleurs été présentés lors d’un congrès international (21st International Symposium on Radiopharmaceutical Sciences (Columbia, MO, USA – Mai 26-31, 2015)). La seconde partie de ma thèse est dédiée au développement de ligands pour des cibles alternatives à la TSPO, qui sont les récepteurs cannabinoïdes de type 2 (CB2R), et les récepteurs purinergiques P2Y12 et P2Y14. Ces nouvelles cibles, récemment émergées présentent un fort potentiel pour de nouvelles opportunités en imagerie. Une nouvelle série de sept composés a par ailleurs déjà été synthétisée en ce qui concerne le CB2R. Les précurseurs des molécules les plus prometteuses ont également été préparés. La synthèse des ligands dédiés aux récepteurs purinergiques a été initiée, et un premier couple référence /précurseur a été obtenu. / Neuroinflammation plays an important role in many neurodegenerative diseases (Alzheimer, Parkinson, Multiple sclerosis …) and recent developments in molecular imaging provide today new insights into the diagnostic and the treatement managment of these diseases. Among the existing imaging techniques, the highly sensitive and quantitative nuclear modalities SPECT (single photon emission computed tomography) but especially PET (positron emission tomography) play key roles. My PhD program is devoted to the design and synthesis of novel radioligands, all dedicated to the imaging of specific targets and processes linked to neuroinflammation. For this, PET and the short-lived positron-emitter fluorine-18 (T1/2: 109.8 min) remain the main focuses. The project has been divided into two sections, the first one concentrates on the development of novel ligands targeting the Translocator Protein 18 kDa (TSPO). Indeed, this target is today recognized as an early biomarker of neuroinflammatory processes and PK11195, an isoquinoline carboxamide labelled with carbon-11, was, in the late 80’s, the first reported PET-radioligand. More recently, new compounds, all belonging to different chemical classes, have emerged and notably the pyrazolopyrimidine acetamide [11C]DPA-713 and the pyridazinoindole acetamide [11C]SSR180575. Within the first section of my PhD, novel derivatives of both DPA-713 and SSR180575 have been synthesized and in vitro characterized. Dedicated precursors for labelling were also developed for the most promising candidates, and radiolabelling has been performed. Some results have been presented at the 21st International Symposium on Radiopharmaceutical Sciences (Columbia, MO, USA – May 26-31, 2015).The second part of my PhD, deals with the development of ligands for alternative targets to the TSPO, like the type-2 cannabinoid receptor (CB2R) and the purinergic P2Y14 / P2Y12 receptors, the latter emerging today as a hot topic for imaging opportunities. Up to now, a series of seven compounds targeting the CB2R has been successfully synthetized and in vitro characterized. Dedicated precursors of the most promising compounds have also been prepared and labelling will be shortly performed. The synthesis of ligands targeting the purinergic receptors has also been initiated and a first couple of reference / precursor has been obtained for the P2Y12R.
130

Modulation de la réactivité astrocytaire par ciblage de la voie JAK2-STAT3 : conséquences dans des modèles murins de la maladie d’Alzheimer / Modulation of Astrocyte Reactivity by targeting the JAK2-STAT3 Pathway : Consequences in Alzheimer’s Disease Mouse Models

Ceyzériat, Kelly 21 December 2017 (has links)
Les astrocytes sont des éléments clés de la physiologie cérébrale. Dans les maladies neurodégénératives comme la maladie d’Alzheimer (MA), les astrocytes deviennent réactifs. Cette réactivité astrocytaire (RA) est essentiellement caractérisée par des changements morphologiques. En revanche, les effets de la réactivité sur les fonctions de support des astrocytes sont mal connus. De plus, les cascades de signalisation qui conduisent à la RA restent à déterminer. Les objectifs de ce projet étaient de : 1/ démontrer que la voie JAK2-STAT3 (Janus Kinase 2 - Signal Transducer and Activator of Transcription 3) joue un rôle central dans le contrôle de la RA au cours des maladies neurodégénératives ; 2/ comprendre quelle est l’implication de la RA dans les altérations moléculaires, cellulaires et fonctionnelles observées dans la MA. Nous avons montré que la voie JAK2-STAT3 est une cascade de signalisation centrale dans la RA (Ben Haim et al., 2015). Dans ce projet, nous démontrons en utilisant de nouveaux outils moléculaires basés sur des vecteurs viraux, que cette voie est nécessaire et suffisante à la RA. Nos résultats montrent également que la modulation de la RA dans deux modèles murins de la MA (souris APP/PS1dE9 et 3xTg-AD) influence certains index pathologiques, mais de façon contexte-dépendante. L’ensemble de ce travail a permis de valider de nouveaux outils pour étudier les astrocytes réactifs in situ et souligne l’importance et la complexité de leur fonctions au cours des maladies neurodégénératives. / Astrocytes are emerging as key players in brain physiology. In Alzheimer’s disease (AD), astrocytes become reactive. Astrocyte reactivity (AR) is essentially characterized by morphological changes. But how the normal supportive functions of astrocytes are changed by their reactive state is unclear. Moreover, signaling cascades leading to AR are not yet determined. In this study, we aim to: 1/ demonstrate the JAK2-STAT3 pathway (Janus Kinase 2 - Signal Transducer and Activator of Transcription 3) is responsible for AR in neurodegenerative diseases ; 2/ understand the contribution of reactive astrocytes to molecular, cellular and functional alterations in AD. We already reported that the JAK2- STAT3 pathway is a central cascade for AR (Ben Haim et al., 2015). Here, we demonstrate, with new molecular tools based on viral vectors, that this pathway is necessary and sufficient to AR. Our results also show that the modulation of AR in two AD mouse models (APP/PS1dE9 and 3xTg-AD mice) influence several pathological hallmarks, but in a context-dependent manner. Overall, this work has generated new original tools to study reactive astrocytes in situ and it underlines the importance and complexity of their functions in neurodegenerative diseases.

Page generated in 0.0971 seconds