• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 1
  • Tagged with
  • 32
  • 28
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neurologiska skillnader mellan kriminella och laglydiga psykopater

Larsson, Rebecka, Ramic, Armir January 2013 (has links)
Psykopater är väl representerade i fångvårdsanstalter och mer än 50 procent av de allvarliga brotten utförs utav psykopater. Man uppmärksammar dock inte de laglydiga psykopaterna med ett konventionellt beteende. Tidigare forskning visar att psykopater har olika neurologiska underskott i hjärnan, men få studier uppmärksammar neurologiska skillnader mellan laglydiga och kriminella psykopater. Syftet med denna uppsats är att förklara de neurologiska skillnaderna mellan kriminella och laglydiga psykopater, samt hur dessa skillnader är kopplade till kriminellt beteende. Detta för att ge en ökad kunskap för psykopati och en förståelse till varför de kriminella psykopaterna begår brott. Materialet som ligger till grund för uppsatsen är vetenskapliga artiklar som systematiskt valts ut. Resultaten visar att kriminella psykopater har sämre autonoma och exekutiva funktioner, såsom kardiovaskulär stressreaktivitet och minskad hjärtfrekvens än vad laglydiga psykopater har. Kriminella psykopater har även en överdriven strukturell asymmetri av hippocampus, minskning av både volym och tjocklek av grå materia i den mellersta prefrontala cortex och orbitofrontala cortex än de laglydiga psykopaterna. / Psychopaths are well represented in prisons and more than 50 percent of the serious crimes are executed by psychopaths. However there are not many studies that observe the psychopaths with a conventional behavior. Previous research shows that psychopaths have different neurological deficits in the brain, but few studies pay attention to neurological differences between law-abiding and criminal psychopaths. The purpose of this paper is to explain the neurological differences between criminals and law-abiding psychopaths, and how these differences are associated to criminal behavior. This is to give a better understanding of psychopathy and a reference of why the criminal psychopaths commit crimes. The material for this paper is based on scientific articles that have been systematically chosen. The results showed that criminal psychopaths had less autonomous and executive functions, such as cardiovascular stress reactivity and decreased heart rate than law-abiding psychopaths. Criminal psychopaths also showed an exaggerated structural asymmetry of hippocampus, reducing both the volume and thickness of grey matter in the middle prefrontal cortex and orbitofrontal cortex than law-abiding psychopaths.
12

Generation of Dopaminergic Neurons from Human Embryonic Stem Cells

Vazin, Tandis January 2008 (has links)
Since the first successful derivation of human embryonic stem cells (hESC), rapid progress has been attained in the development of strategies in differentiation of these cells into various neural lineages, with the fundamental objective of using these cells for replacement and repair of damaged neuronal circuits in the central nervous system (CNS). Of particular interest are midbrain dopaminergic (mDA) neurons, which play a central role in regulation of voluntary movement. Degeneration or loss of function of mDA neurons in the nigrostriatal pathway is associated with Parkinson disease (PD). Stromal-Derived Inducing Activity (SDIA) is recognized as one of the most efficient methods in restricting ESC differentiation to a dopaminergic lineage, and refers to the property of mouse stromal cell lines such as PA6 or MS5 to cause ESC to differentiate to DA neurons. Although this strategy has been extensively used to generate mDA neurons from hESC, the biochemical nature of SDIA is yet unknown.  In the present study mDA neurons were generated from the BG01V2 hESC line by SDIA. To examine whether SDIA exerts its effect directly on hESC and is responsible for early dopaminergic induction, neural progenitor cells (NPC) were enyzmatically isolated from the co-cultures and allowed to differentiate in feeder-free conditions. The isolated cells were committed to a mesencephalic neural lineage, and were capable of maintaining their phenotype and developing into postmitotic mDA neurons in feeder-free conditions. The mDA neurons showed neuronal excitability and dopamine transporter function. The in vitro proliferation and differentiation of the NPC was also investigated by a BrDU incorporation assay. Next, the maintenance of cellular memory and capacity for proliferation of the mesencephalic NPC was assessed. The NPC could be expanded in vitro by five-fold as neurospheres for up to two weeks while retaining their DA differentiation potential, but did not retain a stable phenotype over extended periods of time. Preliminary transplantation experiments of neurospheres in striatal lesioned animals indicated, however, that these cells could survive and conserve their phenotype in vivo. To gain additional insight into the biochemical role of SDIA in early dopaminergic induction of hESC, the separate contributions of cell surface activity and secreted factors were examined. The data revealed that the PA6 cell surface activity promoted cell survival and was mainly responsible for enhanced neurogenesis of hESC, whereas secreted factors provided DA lineage-specific instructions. In order to identify the soluble factors responsible for the DA phenotype-inducing component of SDIA, the gene expression profile of PA6 cells was compared to that of cell lines lacking the DA-inducing property. A number of soluble factors known to be associated with CNS development that were highly expressed in PA6 cells were identified as potential DA differentiation-inducing candidates. These differentially-expressed genes included stromal cell-derived factor 1 (SDF-1/CXCL12), pleiotrophin (PTN), insulin-like growth factor 2 (IGF2), and ephrin B1 (EFNB1). When these factors, termed SPIE, were applied to the hESC, they induced dopaminergic neuronal differentiation of hESC line, BG01V2 and other karyotypically normal hESC lines in vitro. Thus, it appears that SPIE comprises the DA phenotype-inducing property of SDIA. This may provide a simple and direct means of differentiating hESC to form DA neurons in a single step, without a requirement for co-culture, animal cell lines, or animal products. / QC 20100916
13

Regulation of COX-2 signaling in the blood brain barrier

Salagic, Belma January 2009 (has links)
<p>Upon an inflammation the immune system signals the brain by secreted cytokines to elicit central nervous responses such as fever, loss of appetite and secretion of stress hormones. Since the blood brain barrier, (BBB) protects the brain from unwanted material, molecules like cytokines are not allowed to cross the barrier and enter the brain. However, it is clear that they in some way can signal the brain upon an inflammation. Many suggestions concerning this signaling has been made, one being that cytokines bind to receptors on the endothelial cells of the blood vessels of the brain and trigger the production of prostaglandins that can cross the BBB. This conversion is catalyzed by the enzyme cyclooxygenase-2, (COX-2), which is induced by transcription factors like NF-κB in response to cytokines. One of the central nervous responses to inflammatory stimuli is activation of the HPA-axis whose main purpose is glucocorticoid production. Glucocorticoids inhibit the inflammatory response by suppressing gene transcription of pro-inflammatory genes including those producing prostaglandins through direct interference with transcription factors such as NF-κB or initiation of transcription of anti-inflammatory genes like IκB or IL-10. It has however not been clear if glucocorticoids can target the endothelial cells of the brain in order to provide negative feed-back on the immune-to-brain signaling, and in that way inhibit central nervous inflammatory symptoms. An anatomical prerequisite for such a mechanism would be that the induced prostaglandin production occurs in cells expressing GR. This has however never been demonstrated. Here I show that a majority of the brain endothelial cells expressing the prostaglandin synthesizing enzyme COX-2 in response to immune challenge also express the glucocorticoid receptor, (GR). This indicates that immune-to-brain signaling is a target for negative regulation of inflammatory signaling executed by glucocorticoids and identifies brain endothelial GR as a possible future drug target for treatment of central nervous responses to inflammation such as fever and pain.</p>
14

Regulation of COX-2 signaling in the blood brain barrier

Salagic, Belma January 2009 (has links)
Upon an inflammation the immune system signals the brain by secreted cytokines to elicit central nervous responses such as fever, loss of appetite and secretion of stress hormones. Since the blood brain barrier, (BBB) protects the brain from unwanted material, molecules like cytokines are not allowed to cross the barrier and enter the brain. However, it is clear that they in some way can signal the brain upon an inflammation. Many suggestions concerning this signaling has been made, one being that cytokines bind to receptors on the endothelial cells of the blood vessels of the brain and trigger the production of prostaglandins that can cross the BBB. This conversion is catalyzed by the enzyme cyclooxygenase-2, (COX-2), which is induced by transcription factors like NF-κB in response to cytokines. One of the central nervous responses to inflammatory stimuli is activation of the HPA-axis whose main purpose is glucocorticoid production. Glucocorticoids inhibit the inflammatory response by suppressing gene transcription of pro-inflammatory genes including those producing prostaglandins through direct interference with transcription factors such as NF-κB or initiation of transcription of anti-inflammatory genes like IκB or IL-10. It has however not been clear if glucocorticoids can target the endothelial cells of the brain in order to provide negative feed-back on the immune-to-brain signaling, and in that way inhibit central nervous inflammatory symptoms. An anatomical prerequisite for such a mechanism would be that the induced prostaglandin production occurs in cells expressing GR. This has however never been demonstrated. Here I show that a majority of the brain endothelial cells expressing the prostaglandin synthesizing enzyme COX-2 in response to immune challenge also express the glucocorticoid receptor, (GR). This indicates that immune-to-brain signaling is a target for negative regulation of inflammatory signaling executed by glucocorticoids and identifies brain endothelial GR as a possible future drug target for treatment of central nervous responses to inflammation such as fever and pain.
15

Novel Interactors of X-linked Inhibitor of Apoptosis Protein : Expression and Effects on Tumor Cell Death

Steen, Håkan January 2008 (has links)
<p>Programmed cell death, or apoptosis, has during the last decade received a lot of attention due to its involvement in a large number of pathological conditions. Since death is always irreversible, it is important for cells to fully control the initiation and execution of this process. One of many apoptosis-regulatory proteins is XIAP, which blocks the action of caspases, a family of proteases that are important during apoptosis. However, apoptosis inhibitors have to be tightly controlled since too little cell death can lead to the development of tumors and other diseases. This thesis is the result of an aspiration to fully understand the function and regulation of XIAP.</p><p>By using the yeast-2-hybrid system, we identified two novel binding partners of XIAP. The first, GPS2, was found to bind XIAP and inhibit its ability to block caspase-activity. In addition, GPS2 induced caspase-mediated cell death in two different tumour cell lines and XIAP inhibited this effect.</p><p>The second binding partner, Nulp1, preferentially bound XIAP in the presence of the apoptosis-inducer staurosporine. Nulp1 induced or sensitized cell lines to cell death when overexpressed, but this was not blocked by caspase-inhibitors or XIAP, suggesting a different reason for binding than apoptosis regulation. With the aim to understand the Nulp1-XIAP interaction, we continued to study Nulp1 <i>in vivo</i> and <i>in vitro</i>. We studied three different splice variants of Nulp1 and found that they were regulated by poly-ubiquitination and nuclear shuttling. Also, Nulp1 was expressed in embryonic mice, especially in the cortical plate, hippocampal neurons and cerebellar granular neurons. Expression of Nulp1 decreased with age but was still present in cerebellar deep nuclei and Purkinje cells of adult mice. </p><p>To summarize, we have identified GPS2 as an apoptosis-inducing factor and an inhibitor of XIAP <i>in vitro</i>, and Nulp1 as a XIAP-interacting protein during staurosporine-induced apoptosis.</p>
16

Vad säger neurobiologisk forskning om motivationens betydelse för inlärning?

Forngren, Sofia January 2018 (has links)
Kan motivation till att lära sig gå att se genom avbildningar av hjärnan? Finns det någraneurobiologiska stöd för att det dessutom skulle kunna påverka minnesbildning? Tidigareforskning har visat att aktivering av belöningssystemet och ökade nivåer av signalsubstansendopamin kan gynna minnesbildning. I denna översiktsartikel behandlas studier som berörmotivation ur olika psykologiska aspekter och hur det påverkar det deklarativalångtidsminnet. Olika hjärnavbildningsmetoder där dopaminerga regioner och hippocampushar varit centrala, tillsammans med olika inlärningsuppgifter och psykologiska tester talar föratt motivation är en viktig faktor för inlärning. Dessutom visar flera av studierna att positivåterkoppling har en bättre effekt på inlärning jämfört med negativ återkoppling.
17

CXCL13: A Prognostic Marker in Multiple Sclerosis

Havervall, Carolina January 2010 (has links)
<p>In the demyelinating autoimmune disease multiple sclerosis (MS) there is a great need for validated prognostic biomarkers that can give information about both prognosis and disease course. So far only clinical parameters have been shown to predict future outcome. CXCL13 is a potent B cell chemoattractant that has been suggested to be a potential biomarker candidate. The aim of this study was to investigate the usefulness of CXCL13 as a prognostic biomarker for MS.</p><p>Clinical, paraclinical, laboratory and MRI data about a large group of MS patients and controls were collected. CXCL13 levels in cerebrospinal fluid (CSF) samples from these patients were determined by standard enzymelinked immunosorbent assay (ELISA).</p><p>In general CXCL13 were increased in CSF in MS, especially in relapsing-remitting MS during relapses, i.e. with ongoing inflammations in the central nervous system. CXCL13 is a good candidate prognostic marker for MS, since newly diagnosed MS with high CXCL13 levels showed worsened disease course within five years. Most importantly, MS conversion occurred in higher rate in possible MS patients with high concentrations of CXCL13 in CSF, and in a shorter time point. This observation may support an early treatment decision in these patients.</p><p>In conclusion, this study provides support for an association between CXCL13 levels in the CSF and later development of disease severity in MS.</p>
18

Distribution and modulatory roles of neuropeptides and neurotransmitters in the Drosophila brain

Kahsai Tesfai, Lily January 2010 (has links)
The central complex is a prominent neuropil found in the middle of the insect brain. It is considered as a higher center for motor control and information processing. Multiple neuropeptides and neurotransmitters are produced in neurons of the central complex, however, distribution patterns and functional roles of signaling substances in this brain region are poorly known. Thus, this thesis focuses on the distribution of signaling substances and on modulatory roles of neuropeptides in the central complex of Drosophila. Immunocytochemistry in combination with GAL4/UAS technique was used to visualize various signaling substances in the central complex. We revealed different central-complex neurons expressing the neuropeptides; Drosophila tachykinin (DTK), short neuropeptide F (sNPF), myoinhibitory peptide (MIP), allatostatin A, proctolin, SIFamide, neuropeptide F and FMRFamide. Subpopulations of DTK, sNPF and MIP-expressing neurons were found to co-localize a marker for acetylcholine. In addition, five metabotropic neurotransmitter receptors were found to be expressed in distinct patterns. Comparison of receptor/ligand distributions revealed a close match in most of the structures studied. By using a video-tracking assay, peptidergic modulation of locomotor behavior was studied. Different DTK and sNPF-expressing neurons innervating the central complex were revealed to modulate spatial distribution, number of activity-rest phases and activity levels, suggesting circuit dependent modulation. Furthermore, neurosecretory cells in the Drosophila brain that co-express three types of neuropeptides were shown to modulate stress responses to desiccation and starvation. In summary, we have studied two different neuropeptides (DTK and sNPF) expressed in interneuronal circuits and neurosecretory cells of the Drosophila brain in more detail. We found that these neuropeptides display multiple actions as neuromodulators and circulating hormones, and that their actions depend on where they are released. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Manuscript.
19

Brain Stem Involvement in Immune and Aversive Challenge

Paues, Jakob January 2006 (has links)
Activation of the immune system by e.g. bacteria induces the acute-phase-response and sickness behaviour. The latter encompasses among other things fever, lethargy, anorexia and hyperalgesia. An often used model to study sickness behaviour is the intravenous injection of the gram negative bacterial endotoxin lipopolysaccharide (LPS). LPS induces the production of inflammatory mediators, such as cytokines and prostaglandins, which in turn can interact with the central nervous system (CNS) to affect behaviour. The CNS also memorises substances that have made us sick in the past to avoid future harm, a phenomenon called conditioned taste aversion (CTA). An often used model to study CTA is the intraperitoneal injection of LiCl. The pontine parabrachial nucleus (PB) is an autonomic relay nucleus situated in the rostral brain stem that integrates afferent somatosensory and interoceptive information and forwards this information to the hypothalamus and limbic structures. PB is crucial for the acquisition of CTA and PB neurons are activated by many anorexigenic substances. Further, PB neurons express neuropeptides, among those calcitonin gene related peptide (CGRP) and enkephalin, both of which have been implicated in immune signalling, nociception, food intake, and aversion. By using a dual-labelling immunohistochemical/in situ hybridization technique we investigated if enkephalinergic neurons in PB are activated by systemic immune challenge. While there were many neurons in the external lateral parabrachial subnucleus (PBel) that expressed the immediate early gene fos after intravenous injection of LPS and while a large proportion of the PBel neurons expressed preproenkephalin, there were very few double-labelled cells. The fos-expressing cells were predominantly located to the outer part of the PBel (PBelo), whereas the preproenkephalin-expressing PBel neurons were located closest to the peduncle. Thus we conclude that although enkephalin has been implicated in autonomic and immune signalling, enkephalinergic neurons in PB do not seem to be activated by immune stimulation (paper I). To further characterise the PBelo neurons activated by immune challenge we investigated if these neurons expressed CGRP. Dual-labelling in situ hybridisation showed that PBelo neurons that expressed fos after intravenous injection of LPS to a large extent co-expressed CGRP mRNA, indicating that CGRP may be involved in the regulation of the sickness response in immune challenge (paper II). Using dual-labelling immunohistochemistry we examined if PBel neurons activated by an immune stimulus projected to the amygdala, a limbic structure implicated in the affective response to homeostatic challenge. Animals were injected with the retrograde tracer substance cholera toxin b (CTb) into the amygdala and subsequently subjected to immune challenge. We found that approximately a third of the neurons that expressed fos after the intravenous injection of LPS also were labelled with CTb. Thus PBel neurons activated by immune challenge project to the amygdala. The PBel-amygdala pathway has earlier been suggested to be important in nociceptive signalling. To investigate if amygdala-projecting PBel neurons are activated by nociceptive stimuli we again injected animals with CTb into the amygdala. After recovery the animals were injected with formalin into a hindpaw. Dual-labelling immunohistochemistry against fos and CTb showed that very few noxiously activated PB neurons projected to the amygdala. Thus, the PBel-amygdala projection seems to be important in immune challenge but not in nociceptive signalling (paper III). Many PBel neurons express fos after intraperitoneal injection of LiCl. Melanocortins are neuropeptides that recently have been implicated in metabolism, food intake and aversive mechanisms. The PB is known to express melanocortin receptor-4 (MC4-R) mRNA. Using dual-labelling in situ hybridization we investigated if PB neurons activated by intravenous injection of LPS or intraperitoneal injection of LiCl expressed MC4-R mRNA. We found that many PBelo neurons were activated by either LPS or LiCl and that a large proportion of such activated neurons expressed MC4-R mRNA. Further, using dual-labelling in situ hybridization against MC4-R mRNA and CGRP mRNA, we found that a large proportion of the CGRP positive PBelo neurons also expressed MC4-R mRNA. In summary, this thesis shows that CGRP-expressing neurons in the PBel are activated by peripheral immune challenge, that lipopolysaccharide-activated PBel neurons project to the amygdala, that the amygdala-projecting neurons in the PBel are CGRP-positive, and that PBel neurons activated by immune or aversive challenge express MC4-R. Taken together, these data suggest the presence of a melanocortin-regulated CGRP-positive pathway from the PBel to the amygdala that relays information of importance to certain aspects of sickness behaviour. / On the day of the defence date the title of article II was: Feeding-related immune responsive brain stem neurons: association with CGRP. Article II: Erratum for in Neuroreport 2001;12(16):inside back cover. Neuroreport 2001;12(13):inside back cover. Article III: Erratum in: J Comp Neurol. 2005; 483:489-90.
20

Novel Interactors of X-linked Inhibitor of Apoptosis Protein : Expression and Effects on Tumor Cell Death

Steen, Håkan January 2008 (has links)
Programmed cell death, or apoptosis, has during the last decade received a lot of attention due to its involvement in a large number of pathological conditions. Since death is always irreversible, it is important for cells to fully control the initiation and execution of this process. One of many apoptosis-regulatory proteins is XIAP, which blocks the action of caspases, a family of proteases that are important during apoptosis. However, apoptosis inhibitors have to be tightly controlled since too little cell death can lead to the development of tumors and other diseases. This thesis is the result of an aspiration to fully understand the function and regulation of XIAP. By using the yeast-2-hybrid system, we identified two novel binding partners of XIAP. The first, GPS2, was found to bind XIAP and inhibit its ability to block caspase-activity. In addition, GPS2 induced caspase-mediated cell death in two different tumour cell lines and XIAP inhibited this effect. The second binding partner, Nulp1, preferentially bound XIAP in the presence of the apoptosis-inducer staurosporine. Nulp1 induced or sensitized cell lines to cell death when overexpressed, but this was not blocked by caspase-inhibitors or XIAP, suggesting a different reason for binding than apoptosis regulation. With the aim to understand the Nulp1-XIAP interaction, we continued to study Nulp1 in vivo and in vitro. We studied three different splice variants of Nulp1 and found that they were regulated by poly-ubiquitination and nuclear shuttling. Also, Nulp1 was expressed in embryonic mice, especially in the cortical plate, hippocampal neurons and cerebellar granular neurons. Expression of Nulp1 decreased with age but was still present in cerebellar deep nuclei and Purkinje cells of adult mice. To summarize, we have identified GPS2 as an apoptosis-inducing factor and an inhibitor of XIAP in vitro, and Nulp1 as a XIAP-interacting protein during staurosporine-induced apoptosis.

Page generated in 0.0335 seconds