Spelling suggestions: "subject:"neuromorphiques"" "subject:"neuromorphique""
1 |
Reservoir computing photonique et méthodes non-linéaires de représentation de signaux complexes : Application à la prédiction de séries temporelles / Complex signal embedding and photonic reservoir Computing in time series predictionMarquez Alfonzo, Bicky 27 March 2018 (has links)
Les réseaux de neurones artificiels constituent des systèmes alternatifs pour effectuer des calculs complexes, ainsi que pour contribuer à l'étude des systèmes neuronaux biologiques. Ils sont capables de résoudre des problèmes complexes, tel que la prédiction de signaux chaotiques, avec des performances à l'état de l'art. Cependant, la compréhension du fonctionnement des réseaux de neurones dans la résolution de problèmes comme la prédiction reste vague ; l'analogie avec une boîte-noire est souvent employée. En combinant la théorie des systèmes dynamiques non linéaires avec celle de l'apprentissage automatique (Machine Learning), nous avons développé un nouveau concept décrivant à la fois le fonctionnement des réseaux neuronaux ainsi que les mécanismes à l'œuvre dans leurs capacités de prédiction. Grâce à ce concept, nous avons pu imaginer un processeur neuronal hybride composé d'un réseaux de neurones et d'une mémoire externe. Nous avons également identifié les mécanismes basés sur la synchronisation spatio-temporelle avec lesquels des réseaux neuronaux aléatoires récurrents peuvent effectivement fonctionner, au-delà de leurs états de point fixe habituellement utilisés. Cette synchronisation a entre autre pour effet de réduire l'impact de la dynamique régulière spontanée sur la performance du système. Enfin, nous avons construit physiquement un réseau récurrent à retard dans un montage électro-optique basé sur le système dynamique d'Ikeda. Celui-ci a dans un premier temps été étudié dans le contexte de la dynamique non-linéaire afin d'en explorer certaines propriétés, puis nous l'avons utilisé pour implémenter un processeur neuromorphique dédié à la prédiction de signaux chaotiques. / Artificial neural networks are systems prominently used in computation and investigations of biological neural systems. They provide state-of-the-art performance in challenging problems like the prediction of chaotic signals. Yet, the understanding of how neural networks actually solve problems like prediction remains vague; the black-box analogy is often employed. Merging nonlinear dynamical systems theory with machine learning, we develop a new concept which describes neural networks and prediction within the same framework. Taking profit of the obtained insight, we a-priori design a hybrid computer, which extends a neural network by an external memory. Furthermore, we identify mechanisms based on spatio-temporal synchronization with which random recurrent neural networks operated beyond their fixed point could reduce the negative impact of regular spontaneous dynamics on their computational performance. Finally, we build a recurrent delay network in an electro-optical setup inspired by the Ikeda system, which at first is investigated in a nonlinear dynamics framework. We then implement a neuromorphic processor dedicated to a prediction task.
|
2 |
Systèmes neuromorphiques temps réel : contribution a l'intégration de réseaux de neurones biologiquement réalistes avec fonctions de plasticitéBelhadj, Bilel 22 July 2010 (has links) (PDF)
Cette thèse s'intègre dans le cadre du projet Européen FACETS. Pour ce projet, des systèmes matériels mixtes analogique-numérique effectuant des simulations en temps réel des réseaux de neurones doivent être développés. Le but est d'aider à la compréhension des phénomènes d'apprentissage dans le néocortex. Des circuits intégrés spécifiques analogiques ont préalablement été conçus par l'équipe pour simuler le comportement de plusieurs types de neurones selon le formalisme de Hodgkin-Huxley. La contribution de cette thèse consiste à la conception et la réalisation des circuits numériques permettant de gérer la connectivité entre les cellules au sein du réseau de neurones, suivant les règles de plasticité configurées par l'utilisateur. L'implantation de ces règles est réalisée sur des circuits numériques programmables (FPGA) et est optimisée pour assurer un fonctionnement temps réel pour des réseaux de grande taille. Des nouvelles méthodes de calculs et de communication ont été développées pour satisfaire les contraintes temporelles et spatiales imposées par le degré de réalisme souhaité. Entre autres, un protocole de communication basé sur la technique anneau à jeton a été conçu pour assurer le dialogue entre plusieurs FPGAs situés dans un système multicarte tout en garantissant l'aspect temps-réel des simulations. Les systèmes ainsi développés seront exploités par les laboratoires partenaires, neurobiologistes ou informaticiens.
|
3 |
Systèmes neuromorphiques: Etude et implantation de fonctions d'apprentissage et de plasticitéDaouzli, Adel 18 June 2009 (has links) (PDF)
Dans ces travaux de thèse, nous nous sommes intéressés à l'infuence du bruit synaptique sur la plasticité synaptique dans un réseau de neurones biophysiquement réalistes. Le simulateur utilisé est un système électronique neuromorphique. Nous avons implanté un modèle de neurones à conductances basé sur le formalisme de Hodgkin et Huxley, et un modèle biophysique de plasticité. Ces travaux ont inclus la configuration du système, le développement d'outils pour l'exploiter, son utilisation ainsi que la mise en place d'une plateforme le rendant accessible à la communauté scientique via Internet et l'utilisation de scripts PyNN (langage de description de simulations en neurosciences computationnelles).
|
4 |
Systèmes neuromorphiques : Etude et implantation de fonctions d'apprentissage et de plasticitéDaouzli, Adel 18 June 2009 (has links) (PDF)
Dans ces travaux de thèse, nous nous sommes intéressés à l'in fluence du bruit synaptique sur la plasticité synaptique dans un réseau de neurones biophysiquement réalistes. Le simulateur utilisé est un système électronique neuromorphique. Nous avons implanté un modèle de neurones à conductances basé sur le formalisme de Hodgkin et Huxley, et un modèle biophysique de plasticité. Ces travaux ont inclus la con figuration du système, le développement d'outils pour l'exploiter, son utilisation ainsi que la mise en place d'une plateforme le rendant accessible à la communauté scientifique via Internet et l'utilisation de scripts PyNN (langage de description de simulations en neurosciences computationnelles).
|
5 |
Systèmes neuromorphiques : étude et implantation de fonctions d'apprentissage et de plasticitéDaouzli, Adel Mohamed 18 June 2009 (has links)
Dans ces travaux de thèse, nous nous sommes intéressés à l'influence du bruit synaptique sur la plasticité synaptique dans un réseau de neurones biophysiquement réalistes. Le simulateur utilisé est un système électronique neuromorphique. Nous avons implanté un modèle de neurones à conductances basé sur le formalisme de Hodgkin et Huxley, et un modèle biophysique de plasticité. Ces travaux ont inclus la configuration du système, le développement d'outils pour l'exploiter, son utilisation ainsi que la mise en place d'une plateforme le rendant accessible à la communauté scientifique via Internet et l'utilisation de scripts PyNN (langage de description de simulations en neurosciences computationnelles). / In this work, we have investigated the effect of input noise patterns on synaptic plasticity applied to a neural network. The study was realised using a neuromorphic hardware simulation system. We have implemented a neural conductance model based on Hodgkin and Huxley formalism, and a biophysical model for plasticity. The tasks performed during this thesis project included the configuration of the system, the development of software tools, the analysis tools to explore experimental results, and the development of the software modules for the remote access to the system via Internet using PyNN scripts (PyNN is a neural network description language commonly used in computational neurosciences).
|
6 |
Silicon neural networks : implementation of cortical cells to improve the artificial-biological hybrid technique / Réseau de neurones in silico : contribution au développement de la technique hybride pour les réseaux corticauxGrassia, Filippo Giovanni 07 January 2013 (has links)
Ces travaux ont été menés dans le cadre du projet européen FACETS-ITN. Nous avons contribué à la simulation de cellules corticales grâce à des données expérimentales d'électrophysiologie comme référence et d'un circuit intégré neuromorphique comme simulateur. Les propriétés intrinsèques temps réel de nos circuits neuromorphiques à base de modèles à conductance, autorisent une exploration détaillée des différents types de neurones. L'aspect analogique des circuits intégrés permet le développement d'un simulateur matériel temps réel à l'échelle du réseau. Le deuxième objectif de cette thèse est donc de contribuer au développement d'une plate-forme mixte - matérielle et logicielle - dédiée à la simulation de réseaux de neurones impulsionnels. / This work has been supported by the European FACETS-ITN project. Within the frameworkof this project, we contribute to the simulation of cortical cell types (employingexperimental electrophysiological data of these cells as references), using a specific VLSIneural circuit to simulate, at the single cell level, the models studied as references in theFACETS project. The real-time intrinsic properties of the neuromorphic circuits, whichprecisely compute neuron conductance-based models, will allow a systematic and detailedexploration of the models, while the physical and analog aspect of the simulations, as opposedthe software simulation aspect, will provide inputs for the development of the neuralhardware at the network level. The second goal of this thesis is to contribute to the designof a mixed hardware-software platform (PAX), specifically designed to simulate spikingneural networks. The tasks performed during this thesis project included: 1) the methodsused to obtain the appropriate parameter sets of the cortical neuron models that can beimplemented in our analog neuromimetic chip (the parameter extraction steps was validatedusing a bifurcation analysis that shows that the simplified HH model implementedin our silicon neuron shares the dynamics of the HH model); 2) the fully customizablefitting method, in voltage-clamp mode, to tune our neuromimetic integrated circuits usinga metaheuristic algorithm; 3) the contribution to the development of the PAX systemin terms of software tools and a VHDL driver interface for neuron configuration in theplatform. Finally, it also addresses the issue of synaptic tuning for future SNN simulation.
|
7 |
Systèmes neuromorphiques temps réel : contribution à l’intégration de réseaux de neurones biologiquement réalistes avec fonctions de plasticitéBelhadj-Mohamed, Bilel 22 July 2010 (has links)
Cette thèse s’intègre dans le cadre du projet Européen FACETS. Pour ce projet, des systèmes matériels mixtes analogique-numérique effectuant des simulations en temps réel des réseaux de neurones doivent être développés. Le but est d’aider à la compréhension des phénomènes d’apprentissage dans le néocortex. Des circuits intégrés spécifiques analogiques ont préalablement été conçus par l’équipe pour simuler le comportement de plusieurs types de neurones selon le formalisme de Hodgkin-Huxley. La contribution de cette thèse consiste à la conception et la réalisation des circuits numériques permettant de gérer la connectivité entre les cellules au sein du réseau de neurones, suivant les règles de plasticité configurées par l’utilisateur. L’implantation de ces règles est réalisée sur des circuits numériques programmables (FPGA) et est optimisée pour assurer un fonctionnement temps réel pour des réseaux de grande taille. Des nouvelles méthodes de calculs et de communication ont été développées pour satisfaire les contraintes temporelles et spatiales imposées par le degré de réalisme souhaité. Entre autres, un protocole de communication basé sur la technique anneau à jeton a été conçu pour assurer le dialogue entre plusieurs FPGAs situés dans un système multicarte tout en garantissant l’aspect temps-réel des simulations. Les systèmes ainsi développés seront exploités par les laboratoires partenaires, neurobiologistes ou informaticiens. / This work has been supported by the European FACETS project. Within this project, we contribute in developing hardware mixed-signal devices for real-time spiking neural network simulation. These devices may potentially contribute to an improved understanding of learning phenomena in the neo-cortex. Neuron behaviours are reproduced using analog integrated circuits which implement Hodgkin-Huxley based models. In this work, we propose a digital architecture aiming to connect many neuron circuits together, forming a network. The inter-neuron connections are reconfigurable and can be ruled by a plasticity model. The architecture is mapped onto a commercial programmable circuit (FPGA). Many methods are developed to optimize the utilisation of hardware resources as well as to meet real-time constraints. In particular, a token-passing communication protocol has been designed and developed to guarantee real-time aspects of the dialogue between several FPGAs in a multiboard system allowing the integration of a large number of neurons. The global system is able to run neural simulations in biological real-time with high degree of realism, and then can be used by neurobiologists and computer scientists to carry on neural experiments.
|
8 |
Vers une utilisation synaptique de composants mémoires innovants pour l’électronique neuro-inspirée / Toward using innovative memory devices as artificial synapses in neuro-inspired electronicsVincent, Adrien F. 03 February 2017 (has links)
Les réseaux de neurones artificiels, dont le concept s'inspire du fonctionnement des cerveaux biologiques et de leurs capacités d'apprentissage, sont une approche prometteuse pour répondre aux nouveaux usages informatiques dits « cognitifs », tels que la reconnaissance d'images ou l'interaction en langage naturel. Néanmoins, leur mise en œuvre par des ordinateurs conventionnels est peu efficace. Une solution à ce problème est le développement de puces d'accélération matérielle spécialisées qui comportent :- des neurones, unités de traitement de l'information, pour lesquelles des circuits électroniques efficaces existent ;- des synapses, reliant les neurones mais aussi support matériel de l'apprentissage, par le biais de la modulation de leur conductance électrique (qualifiée de « plasticité synaptique »). Réaliser des synapses artificielles intégrables densément et capables d'apprendre in situ reste aujourd'hui un défi majeur.Ces travaux de thèse portent sur l'utilisation synaptique de nanocomposants mémoires innovants, dont certains comportements plastiques riches et intrinsèques sont analogues aux fonctionnalités que nous recherchons.Nous nous intéressons tout d'abord aux jonctions tunnel magnétiques à transfert de spin, développées dans l'industrie pour concevoir de nouvelles mémoires informatiques non volatiles. Nous montrons qu'il est aussi possible d'en faire des synapses artificielles binaires. Après la modélisation analytique de leur comportement naturellement stochastique, nous présentons comment exploiter ce dernier pour faciliter la mise en œuvre in situ d'une règle d'apprentissage probabiliste. À l'aide d'outils de simulation développés au laboratoire, nous étudions l'influence du régime de programmation sur la robustesse d'un système à la variabilité de telles synapses et sur leur consommation énergétique.Nous nous tournons ensuite vers des cellules électrochimiques métalliques Ag2S, d'autres nanocomposants mémoires innovants fabriqués et étudiés par des collaborateurs de l'Université de Lille I, qui y ont déjà observé plusieurs comportements plastiques. Nous avons découvert une plasticité supplémentaire, proche d'un comportement observé en neurosciences. Grâce à un modèle analytique simple permettant de comprendre les relations entre les différentes plasticités, nous montrons en simulation une preuve de concept d'apprentissage non supervisé qui repose sur l'interaction de ces multiples comportements.Pour finir, nous soulevons des pistes de réflexion sur les défis posés par les circuits nécessaires au bon fonctionnement d'un système utilisant comme synapses artificielles les nanocomposants étudiés, notamment lors de la lecture ou de l'écriture de ces derniers.Les résultats de cette thèse ouvrent la voie à la conception de systèmes neuro-inspirés capables d'apprendre en s'appuyant sur la richesse de comportements plastiques offerte par les nanocomposants mémoires innovants. / Artificial neural networks, which take some inspiration from the behavior of biological brains and their learning capabilities, are promising tools to address emerging computing uses known as “cognitive” tasks like classifying images or natural language interaction. However, implementing them on conventional computers is poorly efficient. A solution to this problem is to develop specialized acceleration chips which feature:• neurons, the information processing units, which can be implemented efficienctly with current electronic technologies;• synapses, the connections between the neurons which also support the learning process by adjusting their electrical conductance (“synaptic plasticity”). Implementing artificial synapses with high integration and on-line learning capabilities is still a challenge.This thesis explores the use of innovative memory nanodevices as artificial synapses: some of their rich plastic behaviors naturally implement features that are difficult to access with other devices.First, we investigate spin-transfer torque magnetic tunnel junctions, that are currently develop in industry as a new non volatile memory technology. We show that they can also be used as binary artificial synapses. After modeling their intrinsic stochastic behavior analytically, we describe how to harness this behavior to facilitate the implementation of an on-line probabilistic learning rule. With simulations tools developped in the laboratory, we detail the impact of the programming regime on the resilience of a system that uses such synapses, as well as on the system's power consumptionWe then investigate Ag2S electrochemical metalization cells, another type of innovative memory nanodevices fabricated and characterized by collaborators from Université de Lille I, who had already observed the existence of several plastic behaviors. We discovered an additional plasticity, close to a behavior known in neurosciences. With a simple analytical model that allows a better understanding of the relationships between theses plasticities, we show by simulations means a proof of concept of an unsupervised learning that relies on the interaction of the plastic behaviors theses nanodevices feature.Finally, we consider the challenges arising from the circuits that are required to read and write such artificial synapses in a neuro-inspired system.The results of this Ph.D. work pave the way for the design of neuro-inspired systems that can learn by harnessing the rich plastic behaviors that are featured by innovative memory nanodevices.
|
Page generated in 0.0609 seconds