Spelling suggestions: "subject:"neurones."" "subject:"eurones.""
311 |
Pruriceptor-like vagal neurons respond to allergic inflammatory mediatorsWang, Jo-Chiao 05 1900 (has links)
L’asthme est répandu chez 250 millions de personnes dans le monde, dont la majorité souffre d’asthme allergique à médiation IgE. La diaphonie neuro-immune a récemment fait l’objet d’études approfondies. La présente thèse comprend des études sur des modèles de souris, y compris nos travaux publiés portant sur l’interaction neurone sensoriel-cellule B, un manuscrit soumis sur l’interaction neurones pruricepteurs vagaux-basophiles, ainsi que nos méthodes de recherche publiées sous forme de chapitre de livre. Dans le chapitre 1, nous avons démontré que la perte de fonction des neurones sensoriels atténuait l’inflammation allergique des voies respiratoires induite par les acariens et l’activation des cellules IgE+ B. Les données in vitro suggèrent que l’activation des lymphocytes B et la production d’anticorps étaient améliorées par la substance P. Dans le chapitre 2, nous avons démontré que les neurones sensoriels vagaux répondent aux pruritogènes, à l’analogue du LPA xy-17, à la β-alanine et à la chloroquine, suggérant que le pruricepteur-comme le comportement de certains neurones sensoriels vagaux, comme le prédisent les récents résultats de séquençage d’ARN unicellulaire. Plus important encore, nous avons démontré que l’oncostatine M est produite par les basophiles sous stimulation basée sur FcεRI et peut sensibiliser plusieurs populations sensorielles vagales, y compris les sous-ensembles jugulaires TRPV1+Tac1+ et MrgprA3+. Enfin, dans le chapitre 3, nous illustrons les méthodes détaillées d’étude des neurones sensoriels vagaux, y compris les approches génétiques et pharmacologiques
de perte de fonction, et l’analyse transcriptomique des neurones sensoriels vagaux issus du tri cellulaire activé par fluorescence (FACS). Prises ensemble, nos données suggèrent que les neurones sensoriels peptidergiques participent à l’établissement de l’immunité humorale et que les neurones pruricepteurs vagaux répondent aux médiateurs inflammatoires allergiques, y compris la cytokine amplificatrice des démangeaisons, l’oncostatine M, produite par les basophiles activés par FcεRI. Des études supplémentaires sont nécessaires pour déchiffrer le rôle des neurones pruricepteurs vagaux dans la transmission du signal du tronc cérébral, l’inflammation périphérique et la mécanique pulmonaire globale de l’asthme. / Asthma is prevalent among 250 million people globally, the majority of which feature IgE-mediated allergic asthma. The neuro-immune crosstalk has been under intense study recently. The present thesis comprises studies of mouse models, including our published work focusing on sensory neuron-B cell interaction, a submitted manuscript on vagal pruriceptor neurons-basophil interaction, as well as our research methods published as a book chapter. In chapter 1, we demonstrated that loss of function of sensory neurons dampened house dust mite-induced allergic airway inflammation, IgE+ B cell
activation. In vitro data suggests that the B cell activation and antibody production were enhanced by substance P. In chapter 2, we demonstrated that vagal sensory neurons respond to pruritogens, the LPA analog xy-17, β-alanine, and chloroquine, suggesting the pruriceptor-like behavior of some vagal sensory neurons, as predicted by recent singlecell RNA sequencing results. Most importantly, we demonstrated that oncostatin M is produced by basophils under FcεRI-based stimulation, and can sensitize multiple vagal sensory populations, including the jugular TRPV1+Tac1+ and MrgprA3+ subsets. Finally, in chapter 3, we illustrate the detailed methods for studying vagal sensory neurons, including the genetic and pharmacological loss-of-function approaches, and transcriptomic analysis of vagal sensory neurons yield from fluorescence-activated cell sorting (FACS). Taken together, our data suggests that peptidergic sensory neurons participate in the humoral immunity establishment and vagal pruriceptor neurons respond to allergic inflammatory mediators, including the itch-amplifying cytokine, oncostatin M, produced by FcεRI-activated basophils. Further studies are needed to decipher the role of vagal pruriceptor neurons in brainstem signal transmission, peripheral inflammation, and overall asthmatic lung mechanics.
|
312 |
Simulation d'un réseau de neurones à l'aide de transistors SETTrinh, Franck Ky January 2010 (has links)
Ce mémoire est le résultat d'une recherche purement exploratoire concernant la définition d'une application de réseaux de neurones à base de transistors monoélectroniques (Single-Electron Transistor, SET). Il dresse un portait de l'état de l'art actuel, et met de l'avant la possibilité d'associer les SET avec la technologie actuelle (Field Electron Transistor, FET). La raison de cette association est que les SET peuvent être perçus comme un moyen de changement de paradigme, c'est-à-dire remplacer une fonction CMOS occupant une grande place par un dispositif alternatif présentant de meilleures performances ou équivalentes. Par l'intermédiaire de leurs caractéristiques électriques peu ordinaires au synonyme de"l'effet de blocage de Coulomb", les SET ont le potentiel d'être exploités intelligemment afin de tirer profit sur la consommation énergétique essentiellement. Cette problématique est présentée comme une des propositions alternatives"Beyond CMOS" aux termes de la diminution géométrique des transistors FET à la lumière de l'ITRS. Cette recherche propose d'exposer des circuits électroniques de technologie MOS complétés à l'aide de SET (circuits hybrides) et de montrer que l'on est capable de les remplacer ou les compléter (partiellement) dans des architectures à réseau de neurones. Pour cela, des simulations sous logiciel Cadence Environnement permettront de valider le comportement des circuits sur plusieurs critères tels que la vitesse de réponse et la consommation énergétique, par exemple. En résultat, seront proposées deux architectures à réseaux de neurones de fonctions différentes : une architecture Winner-Take-All et un générateur de spikes en tension. La première étant inspirée d'une publication provenant de GUIMARAES et al., veut démontrer qu'à partir d'une architecture SET existante, il est envisageable de se l'approprier et de l'appliquer aux paramètres des SET du CRN[indice supérieur 2] augmentant donc nos chances de pouvoir les concevoir dans notre groupe de recherche. Le second axe est la simulation d'un circuit capable de générer des signaux à spikes sans perte d'information, ce qui requerrait un nombre considérable de transistors FET sans l'utilisation de SET, mettant donc en valeur la réduction de composants.
|
313 |
Efficacité de détection en tomographie d'émission par positrons: une approche par intelligence artificielleMichaud, Jean-Baptiste January 2014 (has links)
En Tomographie d'Émission par Positrons (TEP), la course à la résolution spatiale nécessite des détecteurs de plus en plus petits, produisant plus de diffusion Compton avec un impact négatif sur l’efficacité de détection du scanner. Plusieurs phénomènes physiques liés à cette diffusion Compton entachent tout traitement des coïncidences multiples d'une erreur difficile à borner et à compenser, tandis que le nombre élevé de combinaisons de détecteurs complexifie exponentiellement le problème. Cette thèse évalue si les réseaux de neurones constituent une alternative aux solutions existantes, problématiques parce que statistiquement incertaines ou complexes à mettre en œuvre. La thèse réalise une preuve de concept pour traiter les coïncidences triples et les inclure dans le processus de reconstruction, augmentant l'efficacité avec un minimum d'impact sur la qualité des images. L'atteinte des objectifs est validée via différents critères de performance comme le gain d'efficacité, la qualité de l'image et le taux de succès du calcul de la ligne de réponse (LOR), mesurés en priorité sur des données réelles. Des études paramétriques montrent le comportement général de la solution : un réseau entraîné avec une source générique démontre pour le taux d'identification de la LOR une bonne indépendance à la résolution en énergie ainsi qu'à la géométrie des détecteurs, du scanner et de la source, pourvu que l'on ait prétraité au maximum les données pour simplifier la tâche du réseau. Cette indépendance, qui n'existe en général pas dans les solutions existantes, laisse présager d'un meilleur potentiel de généralisation à d'autres scanners. Pour les données réelles du scanner LabPET[indice supérieur TM], la méthode atteint un gain d'efficacité aux alentours de 50%, présente une dégradation de résolution acceptable et réussit à recouvrer le contraste de manière similaire aux images de référence, en plus de fonctionner en temps réel. Enfin, plusieurs améliorations sont anticipées.
|
314 |
Représentation adaptative d'images de télédétection à très haute résolution spatiale une nouvelle approche hybride (la décomposition pyramidale avec des réseaux de neurones)Cherkashyn, Valeriy January 2011 (has links)
Résumé: De nos jours l’observation de la terre à l’aide d’images satellitaires de très haute résolution spatiale (Ikonos, Quickbird, World View-2) donne de nombreuses possibilités pour gérer de l’information à l’échelle mondiale. Les technologies actuelles d’acquisition d’information sont à l’origine de l’augmentation importante du volume des données. L’objectif général de cette thèse consiste à développer une nouvelle méthode hybride de représentation d’image numérique de très haute résolution spatiale qui améliore la qualité visuelle d’images compressée avec un haut niveau de compression (100 fois et plus). La nouvelle méthode hybride exploite la transformation pyramidale inverse d’image numérique en utilisant des réseaux de neurones artificiels. Elle combine le traitement spatial et la transformation abstraite de l’image. L’emploi de l’approche de la transformation pyramidale inverse a démontré l’efficacité du traitement de l’information à une ou à des échelles spécifiques, sans interférer ou ajouter un temps de calcul inutile. Cette approche est essentielle pour réaliser une transformation progressive d’image. Les résultats montrent une amélioration du rapport signal pur bruit de 4 dB pour chaque couche additionnelle de la transformation progressive.
Nous avons réussi à garder une qualité visuelle d’images compressées comparable, jusqu’au niveau de la compression de 107 fois. De plus, pour le niveau de la compression de 274 fois, nous avons obtenu une amélioration de la qualité visuelle en comparaison des méthodes de compression courantes (JPEG, JPEG2000). Les résultats du travail confirment l’hypothèse que les images de télédétection possèdent un haut degré de redondance et que l’utilisation d’un réseau de neurones est un bon moyen pour trouver l’opérateur efficace du regroupement de pixels. Cette nouvelle méthode de représentation d’images à très haute résolution spatiale permet de réduire le volume des données sans détérioration majeure de la qualité visuelle, comparé aux méthodes existantes. Enfin, nous recommandons de poursuivre l’exploration du domaine des calculs distribués tels que les réseaux des neurones artificiels, considérant l’augmentation de la performance des outils informatiques (nanotechnologies et calculs parallèles). ||
Abstract: Earth observations using very high-resolution satellite imagery, such as from Ikonos, QuickBird or WorldView-2, provide many possibilities for addressing issues on a global scale. However, the acquisition of high-resolution imagery using these technologies also significantly increases the volume of data that must be managed. With the passing of each day, the number of collected satellite images continues to increase. The overall objective of this work is to develop new hybrid methods for numerical data representation that improve the visual quality of compressed satellite visible imagery for compression levels of 100 times and more. Our new method exploits the inverse pyramid transform using artificial neural networks, and thus addresses the trend in the field of remote sensing and image compression towards combining the spatial processing and abstract transformation of an image. Our implementation of the pyramidal inverse transformation demonstrates the effectiveness of information processing for specific levels, without interfering or adding unnecessary computation time. This approach is essential in order to achieve a gradual transformation of an image. The results showed an improvement in the signal to noise ratio of 4dB for each additional layer in the pyramidal image transformation. We managed to keep a similar level of visual quality for the compressed images up to a compression level of 107 times. In addition, for a compression level of 274, we improved the visual quality as compared to standard compression methods (JPEG, JPEG2000). The results of this study confirm the hypothesis that remote sensing images have a high degree of redundancy and that the use of neural networks is a good way to find the effective operator of the pixel combination. This new method for image representation reduces the volume of data without major deterioration in the visual quality of the compressed images, as compared to existing methods. Finally, we recommend further exploration in the field of distributed computing, such as artificial neural networks, considering the rapidly increasing performance of computers in the near future (parallel computing technology and nanotechnology).
|
315 |
Systèmes neuromorphiques: Etude et implantation de fonctions d'apprentissage et de plasticitéDaouzli, Adel 18 June 2009 (has links) (PDF)
Dans ces travaux de thèse, nous nous sommes intéressés à l'infuence du bruit synaptique sur la plasticité synaptique dans un réseau de neurones biophysiquement réalistes. Le simulateur utilisé est un système électronique neuromorphique. Nous avons implanté un modèle de neurones à conductances basé sur le formalisme de Hodgkin et Huxley, et un modèle biophysique de plasticité. Ces travaux ont inclus la configuration du système, le développement d'outils pour l'exploiter, son utilisation ainsi que la mise en place d'une plateforme le rendant accessible à la communauté scientique via Internet et l'utilisation de scripts PyNN (langage de description de simulations en neurosciences computationnelles).
|
316 |
Diagnostic de groupes électrogènes diesel par analyse de la vitesse de rotation du vilebrequinDesbazeille, Mathieu 02 July 2010 (has links) (PDF)
Cette thèse porte sur le diagnostic d'un moteur diesel vingt cylindres entraînant un groupe électrogène de secours de centrale nucléaire. L'objectif est de réaliser un diagnostic de ce moteur à partir d'une mesure des fluctuations de vitesse du vilebrequin. L'étude s'est focalisée sur les défauts affectant le processus de combustion. Du fait des dimensions imposantes du moteur, les premiers modes de torsion du vilebrequin sont situés dans les basses fréquences. La superposition des ondes de torsion au déplacement du vilebrequin en tant que corps rigide complique considérablement l'analyse du signal. Peu de travaux ont ainsi été entrepris sur un moteur aussi gros. Dans cette thèse, un modèle dynamique en torsion du vilebrequin sous l'hypothèse d'élasticité de celui-ci est tout d'abord établi. Les paramètres de ce modèle sont optimisés afin de reproduire au mieux la réponse en vitesse réelle du vilebrequin. Une méthode de diagnostic originale basée sur une reconnaissance de formes du signal de vitesse est ensuite proposée. En ffet, du fait de l'excitation des premiers modes de torsion, la réponse en vitesse du système présente une signature distincte en fonction du cylindre défectueux. Les formes types, représentatives des différents modes de fonctionnement du moteur, sont obtenues à partir du modèle précédemment établi et non à partir d'essais expérimentaux constituant ainsi la principale originalité de ce travail. Les résultats obtenus en phase opérationnelle sont encourageants. Un défaut réel de combustion a été correctement diagnostiqué incluant la détection du défaut, la localisation du cylindre défectueux ainsi que la quantification de la sévérité du défaut.
|
317 |
Estimation de paramètres de modèles de neurones biologiques sur une plate-forme de SNN (Spiking Neural Network) implantés "in silico"Buhry, Laure 21 September 2010 (has links) (PDF)
Ces travaux de thèse, réalisés dans une équipe concevant des circuits analogiques neuromimétiques suivant le modèle d'Hodgkin-Huxley, concernent la modélisation de neurones biologiques, plus précisément, l'estimation des paramètres de modèles de neurones. Une première partie de ce manuscrit s'attache à faire le lien entre la modélisation neuronale et l'optimisation. L'accent est mis sur le modèle d'Hodgkin- Huxley pour lequel il existait déjà une méthode d'extraction des paramètres associée à une technique de mesures électrophysiologiques (le voltage-clamp) mais dont les approximations successives rendaient impossible la détermination précise de certains paramètres. Nous proposons dans une seconde partie une méthode alternative d'estimation des paramètres du modèle d'Hodgkin-Huxley s'appuyant sur l'algorithme d'évolution différentielle et qui pallie les limitations de la méthode classique. Cette alternative permet d'estimer conjointement tous les paramètres d'un même canal ionique. Le troisième chapitre est divisé en trois sections. Dans les deux premières, nous appliquons notre nouvelle technique à l'estimation des paramètres du même modèle à partir de données biologiques, puis développons un protocole automatisé de réglage de circuits neuromimétiques, canal ionique par canal ionique. La troisième section présente une méthode d'estimation des paramètres à partir d'enregistrements de la tension de membrane d'un neurone, données dont l'acquisition est plus aisée que celle des courants ioniques. Le quatrième et dernier chapitre, quant à lui, est une ouverture vers l'utilisation de petits réseaux d'une centaine de neurones électroniques : nous réalisons une étude logicielle de l'influence des propriétés intrinsèques de la cellule sur le comportement global du réseau dans le cadre des oscillations gamma.
|
318 |
Méthodes d'apprentissage pour l'estimation de la pose de la tête dans des images monoculairesBailly, Kévin 09 July 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de PILE, un projet médical d'analyse du regard, des gestes, et des productions vocales d'enfants en bas âge. Dans ce contexte, nous avons conçu et développé des méthodes de détermination de l'orientation de la tête, pierre angulaire des systèmes d'estimation de la direction du regard. D'un point de vue méthodologique, nous avons proposé BISAR (Boosted Input Selection Algorithm for Regression), une méthode de sélection de caractéristiques adaptée aux problèmes de régression. Elle consiste à sélectionner itérativement les entrées d'un réseau de neurones incrémental. Chaque entrée est associée à un descripteur sélectionné à l'aide d'un critère original qui mesure la dépendance fonctionnelle entre un descripteur et les valeurs à prédire. La complémentarité des descripteurs est assurée par un processus de boosting qui modifie, à chaque itération, la distribution des poids associés aux exemples d'apprentissage. Cet algorithme a été validé expérimentalement au travers de deux méthodes d'estimation de la pose de la tête. La première approche apprend directement la relation entre l'apparence d'un visage et sa pose. La seconde aligne un modèle de visage dans une image, puis estime géométriquement l'orientation de ce modèle. Le processus d'alignement repose sur une fonction de coût qui évalue la qualité de l'alignement. Cette fonction est apprise par BISAR à partir d'exemples de modèles plus ou moins bien alignés. Les évaluations de ces méthodes ont donné des résultats équivalents ou supérieurs aux méthodes de l'état de l'art sur différentes bases présentant de fortes variations de pose, d'identité, d'illumination et de conditions de prise de vues.
|
319 |
Mécanismes d'apprentissage pour expliquer la rapidité, la sélectivité et l'invariance des réponses dans le cortex visuelMasquelier, Timothée 15 February 2008 (has links) (PDF)
Dans cette thèse je propose plusieurs mécanismes de plasticité synaptique qui pourraient expliquer la rapidité, la sélectivité et l'invariance des réponses neuronales dans le cortex visuel. Leur plausibilité biologique est discutée. J'expose également les résultats d'une expérience de psychophysique pertinente, qui montrent que la familiarité peut accélérer les traitements visuels. Au delà de ces résultats propres au système visuel, les travaux présentés ici créditent l'hypothèse de l'utilisation des dates de spikes pour encoder, décoder, et traiter l'information dans le cerveau – c'est la théorie dite du ‘codage temporel'. Dans un tel cadre, la Spike Timing Dependent Plasticity pourrait jouer un rôle clef, en détectant des patterns de spikes répétitifs et en permettant d'y répondre de plus en plus rapidement.
|
320 |
Parallélisation de problèmes d'apprentissage par des réseaux neuronaux artificiels. Application en radiothérapie externeSauget, Marc 07 December 2007 (has links) (PDF)
Les travaux présentés dans cette thèse s'inscrivent dans un projet lié à la radiothérapie externe. L'objectif de ceux-ci est de mettre au point un moteur de calcul permettant une évaluation précise et concise d'un dépôt de dose lors d'une irradiation. Pour remplir cet objectif, nous avons construit un moteur de calcul reposant sur l'utilisation des réseaux de neurones. Dans un premier temps, nous avons développé un algorithme L'apprentissage pour les réseaux de neurones spécifiquement conçu pour la prise en charge des données liées à la radiothérapie externe. Dans un second temps, nos travaux ont consisté en la réalisation d'algorithmes permettant l'évaluation des doses.<br />La première partie a donc porté sur la mise au point de l'algorithme d'apprentissage des réseaux de neurones. Un des problèmes majeurs lors de la préparation de l'apprentissage concerne la détermination de la structure optimale permettant l'apprentissage le plus efficace possible. Pour construire un réseau proche de l'optimal, nous nous sommes basés sur une construction incrémentale du réseau. Ensuite, pour permettre une prise en charge des nombreux paramètres liés à notre domaine d'application, et du volume des données nécessaires à un apprentissage rigoureux, nous nous sommes attachés à paralléliser notre algorithme. Nous avons obtenu, à la fin de cette première phase de nos travaux, un algorithme d'apprentissage incrémental et parallèle pouvant être déployé de manière efficace sur une grappe de calcul non-fiable. Ce déploiement est possible grâce à l'ajout d'un mécanisme de tolérance aux pannes. La deuxième partie, quant à elle, a consisté en la mise au point d'algorithmes permettant l'évaluation des doses déposées lors d'une irradiation. Ces algorithmes utilisent les réseaux de neurones comme référence pour la valeur des doses ainsi que le principe de continuité de la dose en tout point du milieu. Ils ont été construits à partir d'une fine observation du comportement de la courbe de dépôt de dose à chaque changement de milieu.<br />En aboutissement, nous présentons des expérimentations montrant les performances de notre algorithme d'apprentissage, ainsi que de nos algorithmes d'évaluation de doses dans différentes configurations.
|
Page generated in 1.0091 seconds