• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 30
  • 17
  • 14
  • 12
  • 7
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 58
  • 34
  • 26
  • 26
  • 26
  • 25
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Imaging Pain And Brain Plasticity: A Longitudinal Structural Imaging Study

Bishop, James Hart 01 January 2017 (has links)
Chronic musculoskeletal pain is a leading cause of disability worldwide yet the mechanisms of chronification and neural responses to effective treatment remain elusive. Non-invasive imaging techniques are useful for investigating brain alterations associated with health and disease. Thus the overall goal of this dissertation was to investigate the white (WM) and grey matter (GM) structural differences in patients with musculoskeletal pain before and after psychotherapeutic intervention: cognitive behavioral therapy (CBT). To aid in the interpretation of clinical findings, we used a novel porcine model of low back pain-like pathophysiology and developed a post-mortem, in situ, neuroimaging approach to facilitate translational investigation. The first objective of this dissertation (Chapter 2) was to identify structural brain alterations in chronic pain patients compared to healthy controls. To achieve this, we examined GM volume and diffusivity as well as WM metrics of complexity, density, and connectivity. Consistent with the literature, we observed robust differences in GM volume across a number of brain regions in chronic pain patients, however, findings of increased GM volume in several regions are in contrast to previous reports. We also identified WM changes, with pain patients exhibiting reduced WM density in tracts that project to descending pain modulatory regions as well as increased connectivity to default mode network structures, and bidirectional alterations in complexity. These findings may reflect network level dysfunction in patients with chronic pain. The second aim (Chapter 3) was to investigate reversibility or neuroplasticity of structural alterations in the chronic pain brain following CBT compared to an active control group. Longitudinal evaluation was carried out at baseline, following 11-week intervention, and a four-month follow-up. Similarly, we conducted structural brain assessments including GM morphometry and WM complexity and connectivity. We did not observe GM volumetric or WM connectivity changes, but we did discover differences in WM complexity after therapy and at follow-up visits. To facilitate mechanistic investigation of pain related brain changes, we used a novel porcine model of low back pain-like pathophysiology (Chapter 6). This model replicates hallmarks of chronic pain, such as soft tissue injury and movement alteration. We also developed a novel protocol to perform translational post-mortem, in situ, neuroimaging in our porcine model to reproduce WM and GM findings observed in humans, followed by a unique perfusion and immersion fixation protocol to enable histological assessment (Chapter 4). In conclusion, our clinical data suggest robust structural brain alterations in patients with chronic pain as compared to healthy individuals and in response to therapeutic intervention. However, the mechanism of these brain changes remains unknown. Therefore, we propose to use a porcine model of musculoskeletal pain with a novel neuroimaging protocol to promote mechanistic investigation and expand our interpretation of clinical findings.
122

Heterosynaptic metaplasticity in area CA1 of the hippocampus

Hulme, Sarah R, n/a January 2009 (has links)
Long-term potentiation (LTP) is an activity-dependent increase in the efficacy of synaptic transmission. In concert with long-term depression (LTD), this synaptic plasticity likely underlies some types of learning and memory. It has been suggested that for LTP/LTD to act as effective memory storage mechanisms, homeostatic regulation is required. This need for plasticity regulation is incorporated into the Bienenstock, Cooper and Munro (BCM) theory by a threshold determining LTD/LTP induction, which is altered by the previous history of activity (Bienenstock et al., 1982). The present work aimed to test key predictions of the BCM model. This was done using field and intracellular recordings in area CA1 of hippocampal slices from young, adult male Sprague-Dawley rats. The first prediction tested was that following a strong, high-frequency priming stimulation all synapses on primed cells will show inhibition of subsequent LTP and facilitation of LTD induction (heterosynaptic metaplasticity). This was confirmed using two independent Schaffer collateral pathways to the same CA1 pyramidal cells. Following priming stimulation to one pathway, LTP induction was heterosynaptically inhibited and LTD facilitated. To more fully investigate whether all synapses show metaplastic changes, the priming stimulation was given in a different dendritic compartment, in stratum oriens, prior to LTP induction in stratum radiatum. This experiment supported the conclusion that all synapses show inhibited LTP following priming. A second prediction of the BCM model is that metaplasticity induction is determined by the history of cell firing. To investigate this, cells were hyperpolarized during priming to completely prevent somatic action potentials. Under these conditions inhibitory priming of LTP was still observed, and thus somatic action potentials are not critical for the induction of the effect. The next aim was to determine the mechanism underlying heterosynaptic metaplasticity. One way in which plasticity induction can be altered is through changes in gamma-aminobutyric acid (GABA)-mediated inhibition of pyramidal cells. For this reason, it was tested whether blocking all GABAergic inhibition, for the duration of the experiment, would prevent priming of LTP. However, priming inhibited subsequent LTP and it was concluded that GABAergic changes do not underlie either the induction, or expression, of the metaplastic state. Proposed revisions to the BCM model predict that postsynaptic elevations in intracellular Ca�⁺ determine the induction of metaplasticity. There are many potential sources for postsynaptic Ca�⁺ elevations, including entry through N-methyl-D-asparate receptors (NMDARs) or voltage-dependent calcium channels (VDCCs), or release from intracellular stores. Results of the present work demonstrate that the inhibition of LTP is dependent on the release of Ca�⁺ from intracellular stores during priming; however this release is not triggered by Ca�⁺ entry through NMDARs or VDCCs, or via activation of metabotropic glutamate receptors. Overall, the present results show that, in accordance with the BCM model, a high level of prior activity induces a cell-wide metaplastic state, such that LTD is facilitated and LTP is inhibited. In contrast to predictions of the BCM model, this is not mediated by cell-firing during priming. Instead the release of Ca�⁺ from intracellular stores is critical for induction of the metaplastic state.
123

Longitudinal Analysis of Risk Factors Affecting Reading Trajectories in Children Diagnosed with Pediatric Brain Tumors

Ailion, Alyssa S 06 May 2012 (has links)
Prior research suggests aggressive cancer treatments contribute to cognitive impairments in children diagnosed with pediatric brain tumors. The literature also suggests that younger age at diagnosis (AAD) and treatment may result in disrupted cognitive trajectories due to limited brain plasticity. In line with this research, we hypothesized an interaction between radiation therapy (RT) and young AAD of brain tumors, where young AAD and RT results in lower standard scores on the WRAT-R Reading Comprehension Subtest. Analyses included archival data; the sample consists of 134 children diagnosed with pediatric brain tumors with multiple assessments resulting in 487 cases for analysis. Participants were diagnosed with mixed tumor types and locations. A two level multilevel model was used to analyze reading trajectories while taking into account AAD, time since diagnosis, socioeconomic status (SES), and RT. Results detected a positive interaction between AAD and RT (γ =2.08, p=.02). For participants with RT, younger AAD was associated with lower reading scores, whereas AAD had no effect for participants without RT. Results also detected a negative interaction between radiation and time (γ =-2.29, p=.00) indicating that children treated with RT have reading scores that decrease over time. These data suggested that children diagnosed with pediatric brain tumors treated with RT are at higher risk of reading impairment as reflected in their reading scores.
124

The coordinated plasticity of astrocytes and synapses in learning and post-stroke recovery

Kim, Soo Young, 1980- 09 June 2011 (has links)
Stroke typically occurs in one hemisphere and often results in long-term disability in the contralateral body side (paretic side). Greater reliance on the non-paretic body side is used to compensate for this disability. Meanwhile, the brain undergoes degenerative and plastic changes in both hemispheres. Many previous studies have investigated post-stroke brain plasticity, and explored how it is shaped by behavioral experiences, to better understand the mechanisms of functional recovery. However, these studies have primarily focused on neurons and synapses. Given the abundant evidence that astrocytes actively control activity and plasticity of synapses, it seems reasonable to investigate how astrocytes are involved in behavior- and injury-driven brain plasticity. The central hypothesis of these studies is that synaptic plasticity underlying motor skill learning and post-stroke motor rehabilitation is coordinated with structural and functional plasticity of perisynaptic astrocytes. This was tested in a rat model of motor learning and "re-learning" after unilateral stroke-like damage to sensorimotor cortex. In the contralesional homotopic cortex, astrocytic volume varied with lesion size, as did the number of synapses. In the remaining motor cortex of the injured hemisphere, rehabilitative training with the paretic limb increased the proportion of astrocytic membrane apposed with synapses along with density of synapses. Furthermore, the percentage of synapses with astrocytic contacts was significantly correlated with functional outcome. Training with the non-paretic limb also induced greater synaptic density than controls in peri-infarct cortex, but functional outcome was negatively correlated with this and was not correlated with astrocytic contacts with synapses. These findings suggest that plasticity of, and association between, synapses and astrocytes vary with the type of experiences. Moreover, pharmacological upregulation of astrocytic glutamate uptake, which is one of the key ways that astrocytes modulate synaptic activity, interfered with functional recovery, supporting a critical role for astrocytic glutamate uptake in functional outcome following a stroke. Taken together, these studies contribute to better understanding of how lesions and experiences affect plasticity of astrocytes and synapses. These findings suggest that post-injury experiences alter astrocytic association with synapses, and that the coordinated plasticity of astrocytes and synapses is likely to be a critical mediator to functional outcome. / text
125

Effects of protein-energy malnutrition on the inflammatory response to global brain ischemia

2013 June 1900 (has links)
The overarching aim of the thesis research was to investigate mechanisms altered by protein-energy malnutrition (PEM), a common stroke co-morbidity factor that could affect the extent of brain damage and recovery following stroke. To model stroke, the rat 2-vessel occlusion model of global brain ischemia was employed. To characterize the effects of PEM, three states of malnutrition were assessed: PEM co-existing with brain ischemia (Study 1), effects of PEM independent of brain ischemia (Study 2), and PEM developing after brain ischemia (Study 3). The first hypothesis tested was co-existing PEM triggers an exacerbated glial response to global brain ischemia. The failure to achieve a consistent model of global ischemia prevented us from drawing conclusions on whether co-existing PEM exacerbates reactive gliosis. Nonetheless, this study demonstrated that mean temperature and temperature fluctuation are increased within the first 24hr of exposure to a low protein diet. The second hypothesis tested was PEM causes sustained changes in core temperature that are associated with an inflammatory response. Exposure to a low protein diet caused an immediate small and transient increase in mean temperature and a larger sustained increase in temperature amplitude. As malnutrition evolved, mean temperature declined. PEM stimulated an acute-phase response, characterized by an increase in the positive acute-phase protein, alpha-2-macroglobulin (A2M), and a decrease in the negative acute-phase protein, albumin. This response appeared to be aberrant, since the positive acute-phase protein, alpha-1-acid glycoprotein (AGP), was decreased with PEM. The final hypothesis tested was PEM developing after global brain ischemia exacerbates systemic and hippocampal inflammation, which is associated with diminished neuroplasticity. The effects of PEM on the acute-phase response are persistent following brain ischemia, as demonstrated by decreased serum albumin and increased serum A2M. A decrease in the positive acute-phase protein, haptoglobin, strengthened the evidence that PEM triggers an atypical reaction. The strong glial response elicited by global ischemia was unaltered by PEM. However, PEM influenced hippocampal neuroplasticity mechanisms, as GAP-43 and synaptophysin were significantly lower at d21. In summary, it has been demonstrated that PEM affects core temperature, the systemic acute-phase reaction and the neuroplasticity response to global brain ischemia.
126

Epigenetic regulation of stroke recovery : changes in DNA methylation and micro-RNA regulation following stroke and EGF/EPO neurogenesis therapy

Lowings, Michael D, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
Stroke is one of the most common, and damaging, neurological afflictions. Stroke causes widespread and variable chronic effects, due to the limited regenerative ability of the adult brain. Altered gene expression induces neuronal changes necessary for plasticity-dependent recovery, effects which can be enhanced by growth hormone-based pharmaceuticals. These processes are driven by alterations in the informational capacity of the genome – changes driven by epigenetic regulators. Following experimental strokes, and treatment with EGF and EPO, this study shows that two epigenetic regulatory mechanisms, DNA methylation and microRNA regulation, are significantly altered, both in treated and untreated animals. Specifically, treatment induces a net global suppression of miRNA activity, which appears to modify the physical behaviour of neurons in domains ranging from plasticity and memory formation, growth and replication, and potentially even to neurological disease signalling. The confirmation of epigenetic alterations following a stroke indicates a future role for epigenetic neuro-pharmacology in stroke management. / x, [99] leaves : ill. (some col.) ; 29 cm
127

The hidden persuasions of algorithms

Burden, Michael P Unknown Date
No description available.
128

CENTRAL NEURAL AND BEHAVIORAL CORRELATES OF VOICE SECONDARY TO INDUCED UNILATERAL VOCAL FOLD PARALYSIS

Joshi, Ashwini 01 January 2011 (has links)
Understanding the involvement of the central nervous system (CNS) in voice production is essential to incorporating principles of neuroplasticity into therapeutic practice for voice disorders. Early steps to attaining this goal require the identification of specific neural biomarkers of the changes occurring in the CNS from a voice disorder and its subsequent treatment. In the absence of an adequate animal vocalization model, the larynx has not been acutely and reversibly perturbed to concurrently examine the effect on both peripheral and central processing of the altered input/output. Using a unique, reversible perturbation approach, it was the purpose of this study to perturb the larynx to mimic a voice disorder and study short-term neuroplastic response. Functional magnetic resonance imaging (fMRI) was the neuroimaging tool of choice for this study due to its superior spatial and temporal resolution. The voice was perturbed by anesthetizing the right recurrent laryngeal nerve, with a solution of lidocaine hydrochloride and epinephrine to induce a temporary right vocal fold paralysis. The paralysis lasted for approximately 90 minutes and had an overt presentation similar to that of a true vocal fold paralysis. Behavioral and fMRI data were obtained at three time points- baseline, during the vocal fold paralysis and one hour after recovery. Patterns of activity on fMRI during the three time points were found to be distinct on both subjective examination and statistical analysis. The regions of interest examined had distinct trends in activity as a function of the paralysis. Interestingly, males and females responded differently to the paralysis and its subsequent recovery. Strong correlation was not observed between the behavioral measures and fMRI activity reflecting a disparity between the overt presentation and recovery of vocal fold paralysis and cortical activity as seen on fMRI. The fictive paralysis model employed in this study provided a perturbation model for phonation that allowed us to examine behavioral and central neural correlates for disordered phonation in a controlled environment. Although this data is representative of acute changes from a transient paralysis, it provides an insight into the response of the cortex to sudden perturbation at the peripheral phonatory mechanism.
129

DEVELOPMENT OF AN EEG BRAIN-MACHINE INTERFACE TO AID IN RECOVERY OF MOTOR FUNCTION AFTER NEUROLOGICAL INJURY

Salmon, Elizabeth 01 January 2013 (has links)
Impaired motor function following neurological injury may be overcome through therapies that induce neuroplastic changes in the brain. Therapeutic methods include repetitive exercises that promote use-dependent plasticity (UDP), the benefit of which may be increased by first administering peripheral nerve stimulation (PNS) to activate afferent fibers, resulting in increased cortical excitability. We speculate that PNS delivered only in response to attempted movement would induce timing-dependent plasticity (TDP), a mechanism essential to normal motor learning. Here we develop a brain-machine interface (BMI) to detect movement intent and effort in healthy volunteers (n=5) from their electroencephalogram (EEG). This could be used in the future to promote TDP by triggering PNS in response to a patient’s level of effort in a motor task. Linear classifiers were used to predict state (rest, sham, right, left) based on EEG variables in a handgrip task and to determine between three levels of force applied. Mean classification accuracy with out-of-sample data was 54% (23-73%) for tasks and 44% (21-65%) for force. There was a slight but significant correlation (p<0.001) between sample entropy and force exerted. The results indicate the feasibility of applying PNS in response to motor intent detected from the brain.
130

Longitudinal Analysis of Risk Factors Affecting Reading Trajectories in Children Diagnosed with Pediatric Brain Tumors

Ailion, Alyssa S 06 May 2012 (has links)
Prior research suggests aggressive cancer treatments contribute to cognitive impairments in children diagnosed with pediatric brain tumors. The literature also suggests that younger age at diagnosis (AAD) and treatment may result in disrupted cognitive trajectories due to limited brain plasticity. In line with this research, we hypothesized an interaction between radiation therapy (RT) and young AAD of brain tumors, where young AAD and RT results in lower standard scores on the WRAT-R Reading Comprehension Subtest. Analyses included archival data; the sample consists of 134 children diagnosed with pediatric brain tumors with multiple assessments resulting in 487 cases for analysis. Participants were diagnosed with mixed tumor types and locations. A two level multilevel model was used to analyze reading trajectories while taking into account AAD, time since diagnosis, socioeconomic status (SES), and RT. Results detected a positive interaction between AAD and RT (γ =2.08, p=.02). For participants with RT, younger AAD was associated with lower reading scores, whereas AAD had no effect for participants without RT. Results also detected a negative interaction between radiation and time (γ =-2.29, p=.00) indicating that children treated with RT have reading scores that decrease over time. These data suggested that children diagnosed with pediatric brain tumors treated with RT are at higher risk of reading impairment as reflected in their reading scores.

Page generated in 0.0629 seconds