• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organización génica y regulación del sistema "hpx" implicado en la utilización de hipoxantina como fuente de nitrógeno en "Klebsiella pneumoniae"

Riva Pérez, Lucía de la 30 May 2008 (has links)
La estructura molecular de diversos componentes celulares contiene, entre otros elementos, nitrógeno. La fuente de nitrógeno preferida por las bacterias y la mayoría de microorganismos es el amonio, el cual no siempre se encuentra disponible en el medio. Por ello, las bacterias han desarrollado mecanismos moleculares que les permiten obtener nitrógeno de fuentes alternativas como pueden ser las purinas. Este trabajo se centra en el metabolismo de las purinas como fuentes de nitrógeno en la enterobacteria Klebsiella pneumoniae. En este trabajo hemos identificado y caracterizado el sistema génico de K. Pneumoniae implicado en la asimilación de hipoxantina como fuente de nitrógeno, al cual hemos denominado hpx. El sistema hpx está formado por cuatro unidades transcripcionales. Las unidades hpxDE, hpxR y hpxO se transcriben a partir de promotores dependientes de la subunidad (sigma-70) 70 de la RNA polimerasa, mientras que 9hpxPQT presenta un promotor dependiente de (sigma-54) 54. El operón hpxDE está implicado en la oxidación de hipoxantina a ácido úrico. Sin embargo, los productos de los genes hpxD y hpxE no se asemejan a las xantina deshidrogenasas descritas hasta el presente. En base a la similitud de HpxD y HpxE con distintos componentes de la familia de las dioxigenasas, proponemos que el operón hpxDEcodifica una dioxigenasa formada por una oxidorreductasa (HpxE) y una oxigenasa (HpxD). El producto génico del gen hpxO está implicado en la oxidación de ácido úrico a alantoína. Sin embargo, dicha proteína no presenta similitud a uricasas sino a monooxigenasas de compuestos aromáticos dependientes de FAD. Proponemos que HpxO es una FAD-monooxigenasa que catalizaría la oxidación de ácido úrico al intermediario 5-hidroxiisourato, el cual sería transformado a alantoína por la acción secuencial de las proteínas HpxT y HpxQ. El gen hpxP codifica un transportador de purinas cuyo sustrato muy probablemente es ácido úrico. El gen hpxR codifica una proteína de la familia de reguladores LysR que actúa como represor de su propia transcripción y como activador del operón hpxDE El sistema hpx está sometido a una doble regulación, la llevada a cabo por el sistema global del nitrógeno y la llevada a cabo por la regulación específica de la vía. Mientras que el gen hpxR se expresa de manera constitutiva y el gen hpxO no está fuertemente regulado, los operones hpxDE y hpxPQT son inducidos tanto por limitación de nitrógeno como por la presencia de los inductores hipoxantina (hpxDE) o ácido úrico (hpxPQT). La regulación por nitrógeno del operón hpxPQT tiene lugar a través del sistema NTR de K. Pneumoniae, el cual se activa en condiciones de nitrógeno limitantes. El promotor PhpxP depende de la subunidad (sigma-54) 54 de la RNA polimerasa y es reconocido por el activador NtrC (NiTrogen Regulatory protein C). El regulador que reconoce el ácido úrico como molécula inductora todavía no ha sido identificado. Es de destacar que la regulación por nitrógeno del operón hpxDE no tiene lugar a través del sistema NTR. Resultados preliminares sugieren la existencia de un regulador no caracterizado hasta el presente al que proponemos denominar NR (Nitrogen Repressor). Este regulador reprimiría la expresión del operón hpxDE en condiciones de exceso de nitrógeno. Esta es la primera vez que se describe en K. Pneumoniae un sistema de regulación por nitrógeno distinto de NTR, hecho que evidencia la importancia del estudio del sistema génico hpx en esta enterobacteria. La regulación específica está llevada a cabo por el regulador HpxR, el cual reconoce a la hipoxantina como molécula inductora del operón hpxDE. / Gene organization and regulation of the genetic system hpx involved in utilization of hypoxanthine as nitrogen source in Klebsiella pneumoniae"Purines play a key role in nucleic acid and nucleotide metabolism of all cells. In addition, they can be used as nitrogen sources by many microorganisms when ammonium, the preferred nitrogen source, is limiting. Purine catabolism in enterobacteria has been poorly characterized at the genetic level. In this study we identify and characterize the gene cluster (named hpx)responsible for the oxidation of hypoxanthine to allantoin in K. pneumoniae. This genetic system is essential fot the aerobic assimilation of hypoxanthine as nitrogen source under nitrogen limiting conditions.This system is composed by four transcriptional units: hpxDE, hpxR, hpxO and hpxPQT. hpxP gene encodes a purine transporter. The hpxDE operon encodes subunits of the enzyme that catalyzes the oxidation of hypoxanthine to uric acid. The structure of this enzyme is more related to class IB dioxygenases than to xanthine dehydrogenases. Genes hpxO, hpxQ and hpxT are involved in the oxidation of uric acid to allantoin. The hpxO gene product seems to be more related to FAD containing monooxygenases than to uricases. Finally, hpxR encodes a LysR-type regulator that activates hpxDE expression and represses its own gene.Metabolism of hypoxanthine as nitrogen source is regulated by nitrogen conditions and by purines. hpxDE and hpxPQT operons are the units regulated at both levels. Transcription of hpxPQT operon is induced under nitrogen starvation and by uric acid through a regulatory protein other than HpxR. Nitrogen control of this unit is mediated by the NTR system.Expression of hpxDE operon is induced under nitrogen limiting conditions, independently fromthe NTR system, and by hypoxanthine through HpxR.
2

Operation and Model Description of Advanced Biological Nitrogen Removal Treatments of Highly Ammonium Loaded Wastewaters

Dosta Parras, Joan 23 October 2007 (has links)
The conventional Biological Nitrogen Removal (BNR) process consists on the oxidation of ammonia to nitrate (nitrification) and the subsequent reduction of nitrate to nitrogen gas (denitrification) using biodegradable COD as electron donor. If this BNR process is carried out over nitrite, it is obtained a saving of 25% of the aeration costs, the 40% of the external COD to denitrify and the 30% of sludge produced. Another feasible treatment is the combination of partial nitrification (oxidation of the 50% of NH4+-N to NO2--N) with Anammox (denitrification of NO2--N to N2 using NH4+-N as electron donor). When compared with conventional BNR, this process avoids the requirement of COD to denitrify, leads to a saving of 65% of the oxygen supply and produces little sludge.In this thesis, several BNR processes have been tested to remove the nitrogen present in three wastewaters widely generated in Catalonia: supernatant from Anaerobic Digestion (AD) of municipal sewage sludge, supernatant from AD of the organic fraction of municipal solid waste and supernatant from AD of pig slurry.For these three wastewaters, the Sequencing Batch Reactor (SBR) technology was tested, operating with 3 cycles per day, SRT 11-12 days, temperature 30-32 ºC and using an external carbon source to denitrify. The working free ammonia concentrations and the reduced dissolved oxygen concentrations led to the inhibition of the nitrite oxidation to nitrate. Moreover, the integration of a coagulation/flocculation step inside the operating SBR cycle was studied to reduce the effluent COD. The operating nitrogen loading rates were around 0.85 kg N m-3 day-1.The SBR operation was also modelled by means of an Activated Sludge Model extended to describe the BNR over nitrite. This model includes pH calculation, the inhibition of nitrification by pH, NH3 and HNO2, oxygen supply and the stripping of CO2 and NH3. A methodology based on respirometric batch tests was proposed to assess the model parameters. Once calibrated, the proposed model showed very good agreement between experimental and simulated data of the three studied SBR treatments. The SHARON-Denitrification process was also studied in this work. This biological process takes place in a continuous reactor where aerobic/anoxic periods are alternated under specific HRT and temperature conditions that favours ammonium oxidizers growth and assures the total wash-out of nitrite oxidizers. An optimized performance of this process was obtained at HRT 2.1 days, 33 ºC, cycle length of 2 h and using methanol to denitrify. However, the use of supernatant of hydrolysed primary sludge as the organic carbon source to denitrify improved the process efficiency due to the alkalinity present in the primary sludge. The obtained operating nitrogen loading rate of this reactor was 0.38 kg N m-3 day-1.Furthermore, two biological nitrogen removal treatments for partial nitrification of sludge reject water were operated and modelled: the SHARON process and the partial nitrification in a SBR. Both processes showed a good performance in the generation of an effluent with a NH4+-N to NO2--N on molar basis of approximately 1. In the SBR, the key factor responsible of the inhibition of nitrite oxidizers was the working free ammonia concentration. For the SHARON process the key factor was the implemented SRT at the operating temperature. Finally, an Anammox SBR was operated to treat a highly ammonium loaded synthetic wastewater, that represented the effluent obtained in the partial nitrification units. The feasibility of the Anammox process at different temperature conditions (between 18 and 30ºC) was tested. At 18 ºC, a stable operation was achieved treating 0.30 kg N (L day)-1, with a stoichiometry slightly different from that obtained under 30 ºC. / EN CASTELLANO: La legislación es cada vez más estricta para la reducción del contenido de nutrientes (entre los que destaca el nitrógeno) en el efluente de plantas de tratamiento de aguas residuales, lo cual estimula la investigación para mejorar este aspecto en las plantas ya existentes. La tendencia actual es aplicar tratamientos de eliminación de nutrientes sobre aquellas corrientes ricas en contaminante.En esta tesis doctoral se ha trabajado con distintas aguas residuales con alto contenido en nitrógeno amoniacal al proceder de un tratamiento de digestión anaeróbica de residuos orgánicos altamente proteicos: sobrenadante de digestión anaeróbica de fangos de Estaciones Depuradoras de Aguas Residuales (EDAR) municipales, sobrenadante de digestión anaeróbica de la Fracción Orgánica de Residuos Municipales (FORM) y sobrenadante de digestión anaeróbica de purines de cerdo. Entre las posibles alternativas de tratamiento de dichas aguas residuales, el tratamiento biológico acostumbra a ser el más recomendable, en base a la eficiencia de tratamiento y los costes de instalación y operación.Para tratar estas aguas residuales se ha llevado a cabo un estudio de operación y modelado de diferentes tratamientos avanzados de eliminación biológica de nitrógeno: En primer lugar, la utilización de un reactor discontinuo secuencial en el cual se realiza un proceso de nitrificación/desnitrificación vía nitrito, lo cual supone un ahorro, respecto a los tratamientos biológicos convencionales, del 25% de los costes de aireación y del 40% de materia orgánica externa para desnitrificar. Por otro lado, se ha experimentado el tratamiento biológico de nitrógeno en un reactor SHARON/Desnitrificación, que conduce a una reducción de costes similar a la obtenida en un reactor secuencial por cargas. Finalmente, se ha estudiado la utilización de un sistema combinado de nitrificación parcial y Anammox. Respecto al tratamiento convencional, esta tecnología evita la necesidad de usar materia orgánica para desnitrificar y conduce a un ahorro del 65% de los costes de aireación, produciendo muy poca cantidad de fangos. Sin embargo, los puntos débiles del proceso de Nitrificación parcial/Anammox son el lento crecimiento de la biomasa Anammox y su baja resistencia a inhibidores. / RESUM EN CATALÀ: La legislació és cada vegada més estricta per tal de reduir el contingut de nutrients (entre els que destaca el nitrogen) en l'efluent de les plantes de tractament d'aigües residuals, la qual cosa estimula la recerca per tal de millorar aquest aspecte en les plantes ja existents. La tendència actual és cercar aquelles corrents riques en contaminant per aplicar un tractament específic sobre elles. En aquesta tesi s'ha treballat amb diferents aigües residuals d'alt contingut en nitrogen amoniacal en provenir d'un tractament de digestió anaeròbica de materials fortament proteics: sobrenedant de digestió anaeròbica de fangs d'Estacions Depuradores d'Aigües Residuals (EDAR) municipals, sobrenedant de digestió anaeròbica de la Fracció Orgànica de Residus Municipals (FORM) i sobrenedant de digestió anaeròbica de purins de porc. Entre les possibles alternatives de tractament d'aquestes aigües residuals, el tractament biològic acostuma a ser el més recomanable, en base a l'eficiència del tractament i els costos d'instal·lació i operació.Per tal de tractar aquestes aigües residuals s'ha fet un estudi d'operació i modelització de diferents tractaments avançats d'eliminació biològica de nitrogen: En primer lloc, la utilització d'un reactor discontinu seqüencial en el qual es realitza un procés de nitrificació/desnitrificació via nitrit, la qual cosa suposa un estalvi, respecte els tractaments biològics convencionals, del 25% dels costos d'aireig i del 40% de matèria orgànica externa per desnitrificar. Per altra banda, s'ha experimentat el tractament biològic de nitrogen en un reactor SHARON/Desnitrificació, el qual suposa una reducció de costos similar a la obtinguda en un reactor seqüencial per càrregues. Finalment, s'ha estudiat la utilització d'un sistema combinat de nitrificació parcial i Anammox. Respecte el tractament convencional, aquesta tecnologia evita la necessitat d'emprar matèria orgànica per desnitrificar i condueix a un estalvi del 65% dels costos d'aireig, produint molt poca quantitat de fangs. Tot i així, els punts febles del procés de Nitrificació parcial/Anammox són el lent creixement dels microorganismes Anammox i la seva baixa resistència a inhibidors.
3

Desarrollo del proceso anammox para el tratamiento de lixiviados: puesta en marcha y aplicación

López Castillo, Helio 01 December 2008 (has links)
La eliminación biológica de nitrógeno amoniacal se ha llevado a cabo, habitualmente, a través del proceso convencional de nitrificación-desnitrificación. Sin embargo, los lixiviados generados en los depósitos controlados de residuos sólidos urbanos contienen elevadas cantidades de amonio y bajas concentraciones de materia orgánica biodegradable, así como una elevada salinidad. En este caso, para reducir el elevado coste económico que supone aplicar los procesos convencionales en este tipo de efluentes es conveniente desarrollar sistemas alternativos. Uno de estos nuevos procesos biológicos se basa en el proceso anammox (acrónimo en inglés de anaerobic ammonium oxidation) previa nitritación parcial de amonio a nitrito. El proceso anammox es un proceso autotrófico que realiza la conversión de amonio y nitrito a nitrógeno gas bajo condiciones anaerobias. El menor consumo de oxígeno durante el proceso de nitritación parcial y la no necesidad de adicionar materia orgánica para desnitrificar representan un importante ahorro económico respecto a los tratamientos convencionales / Biological nitrogen removal has traditionally been performed by the conventional nitrification-denitrification process. Leachates generated in urban solid waste landfills are characterized by high ammonia concentration and low biodegradable organic matter content, as well as high salinity. In order to reduce the economic costs associated with the conventional process currently used for this kind of effluents, it is necessary to develop alternative treatment procedures. One of these alternative biological systems is the anammox (anaerobic ammonium oxidation) process, previous partial nitritation from ammonia to nitrite. It is an autotrophic process that converts ammonia and nitrite to dinitrogen gas under anaerobic conditions. When compared to conventional treatments, the combined partial nitritation and anammox processes have lower dissolved oxygen consumption for partial nitritation and organic matter is no longer needed for autotrophic denitrification.

Page generated in 0.0271 seconds