• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 17
  • 15
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 1
  • Tagged with
  • 178
  • 178
  • 43
  • 32
  • 29
  • 23
  • 23
  • 21
  • 18
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Using Elevation to Test Effects of Winter Climate Change on Fates of Litter-Derived Nitrogen

Tiller, Jenna Renee 30 November 2017 (has links)
No description available.
172

Effects of grazing management and pasture composition on the nitrogen dynamics of a dairy farm: a simulation analysis

Bates, Andrew John January 2009 (has links)
There is an extensive debate on the potential environmental impact of dairy farms and in particular the effect of dairy farms on the nitrogen cycle and the effect that this has on ecosystems. Within New Zealand and in particular in the South Island, the expansion of dairying and the adoption of new dairy systems has led to this becoming an increasingly important issue, locally through its effect on water quality and the environment and nationally and internationally through the production of green house gases. Increases in nitrogen usage at the expense of clover nitrogen fixation, irrigation, stocking rate and the introduction of dairy cows onto light free draining soils previously the preserve of arable or sheep farming has led to concern as to the effect intensive pastoral dairying may have on the nitrogen dynamics of the farm and the environment. This study is designed to assess how changes in grazing management in particular changes in pre-grazing and post-grazing residuals alter the clover/ryegrass balance on the farm and the effect that this has on the farm’s nitrogen dynamics. The effects of qualitative changes in grazing management on pasture composition are well established but little is known of the effect of quantitative changes in pasture management on composition, in particular the effect of grazing residuals. There are a number of detailed models of the physiological processes in the energy and nutrient cycling in plants, animals and the soil. There are a smaller number of whole farm models that through integration and simplification of component models attempt to represent the flux of nutrients though a dairy farm. None of these whole farm models is currently able to model the nitrogen flux through a dairy farm at a sufficient level of resolution to capture differences in pasture composition as these occur spatially, temporally and in response to grazing management. This project sought to better understand the nitrogen dynamics on a dairy farm by constructing and then linking component models – a pasture composition and growth model, a cow model, an excretal return model, a soil model and a water balance model – within a whole farm management schedule. The formal null hypothesis is that the mechanistic, mathematical model constructed for this PhD cannot capture and explain the full range of the changes in soil water content, soil nitrogen status, pasture production and composition and animal production, following the alteration in management of the dairy farm between 2002 and 2004. Individual component models were constructed by the author using the computer software package (Matlab) and validated against data extracted from the literature. The models were then converted into one simulation package using C-sharp as the source code language by Elizabeth Post, Senior Computer Scientist at Lincoln Ventures Ltd, Lincoln, New Zealand and the author. This model was then used to investigate the nitrogen dynamics of a dairy farm: the relationship with pasture composition and whether small changes in pasture residuals make a difference to pasture composition and nitrogen dynamics. Two different simulations were run based on the management practice of Lincoln University Dairy farm (LUDF) over two dairy seasons (2002-03 and 2003-04) and validated against the data recorded on this farm. In 2002-03, 50 cows were over wintered and 580 cows were subsequently milked on 200ha. Post grazing residuals where maintained at 1600-1750KgDM/ha. In 2003-04, 125 cows were overwintered and 635 cows were milked on 200ha with post grazing residuals maintained at 1400KgDm/ha. All models operate on a daily time step. Within the pasture model composition is described by 9 state variables describing different components of the pasture and pasture growth is modelled mechanistically from a calculation of component photosynthesis. A further 9 state variables describe the nitrogen composition of the pasture components. The soil model is a variable two layer, mechanistic representation, parametised for the shallow, stony soils of LUDF. Soil water status is an input for the pasture model while water uptake by the growing plants affects the soil water balance within the soil model. Animal intake and production are modelled mechanistically with model cows described in terms of their age, genetic merit, body weight, breed, pregnancy status, conception date and body condition score. Each cow type produces a different quantity of urinary and faecal excretion which varies with dry matter intake, milk yield and the sodium and potassium status of the pasture. Excretal nitrogen composition is predicted within a separate model which calculates daily nitrogen excretion in faeces, urine and milk. Excretions are deposited randomly over the grazed area and account is taken of overlapping excretions that are created on the same day and overlaps that occur with older excretal patches deposited in previous grazing rounds. Each excretal patch has its own associated pasture, water and soil model reflecting the differences in nitrogen status between patches. Grazing preference is expressed within the model between different classes of excretal patch and between excretal patches and the base pasture and between clover and grass. Supplementary silage is conserved and fed according to the management schedule of LUDF. Cows calve, become pregnant and are dried off within the model according to the relevant records from LUDF. Cows are deemed to arrive on the farm on the day of calving and to leave on the day that drying off is finished (a 5 day procedure within the model), except for those cows that are overwintering which remain on the farm. The soil model has multiple nitrogen/carbon pools and is dynamically linked to all the other models. External nitrogen losses from the system are modelled as volatilisation, leaching and denitrification, with pasture nitrogen uptake from the soil model and fixation by clover from the atmosphere. Both the individual component models and the final assembled composite model were successful in matching the available data in terms of pasture and animal production, pasture composition, soil water balance and nitrogen status and external losses. The model indicates that the low residual, high stocking rate farm returns more excreta to the soil. However, this is countered by a reduction in the amount of dead material returned to the paddock and this reduces the relative size of the pool of nitrogen in the dead organic matter. This produces a relative lack of substrate for the soil microbes which are thus unable to exploit all of the nitrogen in the available pool. Soil ammonium and nitrate pools are also increased from the increase in faecal and urinary return so precipitating an immobilising flux from these larger pools to the smaller pool of nitrogen available to the soil microbes. However, the relative inability of the soil bacteria to fully exploit this means that the production of soil organic live matter and the resulting mineralising flux from the dead organic matter pool through the available pool to the ammonium and nitrate pools is reduced. The larger ammonium and nitrate pools will also be associated with increased external losses from the system as denitrification, leaching and volatilisation are increased. The increase in the clover percentage within the sward in 2003-04 led to greater nitrogen fixation and the model suggests that some of the extra nitrogen is effectively captured by the animals in increased production. However, the reduction in the return of dead matter coupled with an increase in excretal return and the consequent increase in the mineral nitrogen pools within the soil lead to greater losses of nitrogen from the soil.
173

Nitrogen Balance for a 23-Square Mile Minnesota Watershed

Johnson, Jack D. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / The nitrogen balance of a watershed near the city of New Prague, Minnesota was evaluated as part of an overall study on lake and stream eutrophication. Although the n-balance of a humid Midwest watershed cannot be expected to be identical to that of an arid watershed, the processes are the same and differences should be mainly quantitive. Sources of input and causes of depletion are reviewed for 4 points in the nitrogen cycle: the atmospheric zone, the soil-atmosphere interface, the plant-root and soil-water zone and the surface water zone. In the New Prague watershed, commercial fertilizer and bulk precipitation were the major sources of input, contributing, respectively, 53% and 34.4% of the total input of 2.34 million lb/yr. Crop yield and soil or groundwater storage contributed 52.1% and 20.4% of non-enrichment depletions. The closeness of the values of crop yield and commercial fertilizer application was an unfortunate coincidence and is certainly not an indication that the entire fertilizer supply was taken up cry crops. In an arid environment, free from fertilized agriculture, bulk precipitation probably provides the major source of nitrogen compounds.
174

Nitrogen Species Transformations of Sewage Effluent Releases in a Desert Stream Channel

Sebenik, P. G., Cluff, C. B., DeCook, K. J. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / A preliminary study was made with the objective of examining nitrogen species transformations of treated sewage effluent releases within the channel of an ephemeral stream, the Santa Cruz River of southern Arizona. Water quality samples were taken at established locations in sequence so that peak daily flows could be traced as the effluent moved downstream. Results indicate that increased nitrification, coinciding with changing stream characteristics, starts in the vicinity of Cortaro Road (6.3 river miles from the Tucson Sewage Treatment Plant discharge). Through physical-chemical changes in streamflow, nitrate -nitrogen values reach a maximum at approximately 90-95 percent and 60-80 percent of total flow distance for low flows and high flows, respectively. Concentrations of ammonia-nitrogen and total nitrogen decrease continuously downstream with both high and low flows. Therefore, the rate of nitrification within sewage effluent releases in a desert stream channel evidently is related to flow distance and physical characteristics of the stream.
175

Effect of Algal Growth and Dissolved Oxygen on Redox Potentials in Soil Flooded with Secondary Sewage Effluent

Gilvert, R. G., Rice, R. C. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Algal growth and oxygen evolution at the soil -water interface of soil recharge basins intermittently flooded with secondary sewage effluent (SSE) produced diurnal fluxes in dissolved oxygen (DO) in the SSE and redox potentials (Eh) in the SSE and the surface soil of the basin. The maximum daily DO-% saturation in the SSE during flooding ranged from 30 to 450 %, depending on the length of flooding and seasonal effects of temperature and solar radiation. Diurnal cycles of Eh in the SSE and the top 0 to 2 cm of soil indicated that oxygen production by algae and bacterial nitrifying and denitrifying reactions at the soil-water interface are occurring daily for limited periods during flooding and that these reactions might contribute to the net-N removal and renovation of SSE by soil filtration.
176

Response of the understorey vegetation to selection cutting and clear cutting in the initial phase of Norway spruce conversion / Reaktion der Bodenvegetation nach Zielstärkennutzung und Kahlschlag in der Initialphase des Umbaus von Fichtenreinbeständen

Heinrichs, Steffi 17 March 2010 (has links)
No description available.
177

Fatores de controle das emissões de óxido nitroso (N2O) em tanque de aeração de estação de tratamento de esgoto

Brotto, Ariane Coelho 27 April 2017 (has links)
Submitted by Biblioteca de Pós-Graduação em Geoquímica BGQ (bgq@ndc.uff.br) on 2017-04-27T16:58:25Z No. of bitstreams: 1 Dissertação Brotto, A. C.pdf: 1827218 bytes, checksum: d583ce8460c1efc5934c93cec6ef4c3d (MD5) / Made available in DSpace on 2017-04-27T16:58:25Z (GMT). No. of bitstreams: 1 Dissertação Brotto, A. C.pdf: 1827218 bytes, checksum: d583ce8460c1efc5934c93cec6ef4c3d (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / Universidade Federal Fluminense. Instituto de Química. Programa de Pós-Graduação em Geociências- Geoquímica Ambiental. Niterói, RJ / O estudo das emissões de óxido nitroso (N2O) em processos de tratamento de esgoto tem se tornado necessário e urgente nos últimos anos visto à sua contribuição às mudanças climáticas globais, já que este gás é responsável por 6% do efeito estufa e tem se tornado a principal substância destruidora do ozônio estratosférico do século XXI. Poucos são os estudos que quantificaram as emissões de N2O diretamente em estações de tratamento de esgoto (ETEs) e a literatura apresenta uma grande variação nos fatores de emissão (FEs) obtidos por eles. As Diretrizes de 2006 do IPCC para Inventários de Gases do Efeito Estufa sugerem o FE de 3,2 (2-8) g N2O pessoa-1 ano-1 para estimativas das emissões de N2O em ETEs, que corresponde a 0,035% do nitrogênio total (NT) emitido como N2O. As emissões de N2O em processo de tratamento de lodos ativados foram determinadas no período de janeiro a julho de 2010 em uma ETE municipal no Estado do Rio de Janeiro que trata aproximadamente 14,7 mil m3 dia-1 com média remoção de DQO para o período de estudo de 73% e carga de NT afluente de 46 mg N L-1. Os principais parâmetros operacionais relacionados às emissões de N2O em ETE foram estudados, a saber, concentração de oxigênio dissolvido (OD), concentração de nitrito (NO2 -), pH e temperatura. As maiores emissões de N2O foram observadas quando a concentração de OD se encontrava entre 1,3 e 3,4 mg L-1, o pH entre 5,9 e 6,5 e temperatura acima de 30oC. Enquanto as menores emissões ocorreram em concentrações de OD abaixo de 1,0 mg L-1 e acima de 4,0 mg L-1, e em pH acima de 6,5. O fluxo de N2O estimado é de 4,1 x 105 g N2O ano-1 e os FEs de N2O per capita, por vazão de esgoto tratado e pela carga NT afluente são 8,1 g N2O pessoa-1 ano-1, 8,0 x 10-5 g N2O L -1 e 0,12%. O FE per capita estimado exclusivamente para o tanque de aeração é aproximadamente 2,5 vezes superior ao proposto pelo IPCC (2006) para inventários de emissões de N2O para países que possuam sistemas centralizados de tratamento de esgoto com avançado controle dos processos de nitrificação e desnitrificação. / The study of nitrous oxide (N2O) emissions from wastewater treatment processes has become necessary and urgent in the last years due to its contribution to global climate change, since this gas is responsible for 6% of the global greenhouse effect and will become the main ozone-depleting substances (ODS) of the 21st century. Few studies have quantified the direct emissions of N2O from wastewater treatment plants (WWTPs) and literature shows a wide variation in the emission factors (EFs) obtained by them. 2006 IPCC Guidelines for National Greenhouse Gas Inventories suggests an EF to estimate N2O emissions from WWTP of 3.2 (2.8) g N2O person-1 yr-1, which corresponds to 0.035% of total nitrogen emitted as N2O. Emissions of N2O from a full-scale activated sludge process was determined from January to July of 2010 during measurement campaign at a municipal WWTP in the State of Rio de Janeiro that treat roughly 14,700 m3 day-1 with an average influent removal COD for the period of study of 73% and total nitrogen load (TN) of 46 mg N L-1. The most important operational parameters leading N2O emissions in WWTP were also studied, namely, dissolved oxygen concentration (DO), nitrite (NO2 -) concentration, pH and temperature. The largest emissions of N2O were observed when DO concentration was between 1.3 and 3.4 mg L-1, pH between 5.9 and 6.5 and temperatures above 30oC. While lower emissions occurred in DO concentrations below 1.0 mg L-1 and above 4.0 mg L-1, and at pH above 6.5. Total estimated annual flux of N2O is 4.1 x 105 g N2O yr-1 and the EF of N2O estimated per capita, wastewater flow and the influent TN load are 8.1 g N2O person-1 yr-1, 8.0 x 10-5 g N2O L(wastewater)-1 and 0.12%. The per capita EF estimated exclusively for the aeration tank is almost 3 times higher than that proposed by the IPCC (2006) for N2O emission inventories for countries that predominantly have advanced centralized WWTPs with nitrification and denitrification steps.
178

Salinidad y trigo duro: Firmas isotópicas, actividad enzimática y expresión génica

Yousfi, Salima 03 July 2012 (has links)
La salinidad y el estrés hídrico son los factores más importantes que limitan la producción de trigo duro, sobre todo en regiones áridas y semiáridas, como la región Mediterránea. El trigo duro es uno de los principales cultivos en el sur y este de la Cuenca Mediterránea, donde se cultiva frecuentemente en condiciones de secano y si es posible con riego deficitario, a menudo con agua de poca calidad, que junto a una elevada evapotranspiración, puede provocar una progresiva salinización del terreno. En este sentido, la mejora genética de trigo duro para una mejor adaptación a estas condiciones de estrés es una de las pocas alternativas viables. El objetivo general de esta Tesis es estudiar las bases fisiológicas y moleculares de las diferencias genotípicas en crecimiento potencial y tolerancia a la salinidad y el estrés hídrico. En un primer estudio (Experimento 1) publicado en “Functional Plant Biology” se investigó qué criterio fenotípico de selección era el más adecuado para seleccionar genotipos de trigo duro que crecieran mejor en condiciones de salinidad continuada. De esta forma se determinó la importancia de los isótopos estables como criterios eficientes para seleccionar genotipos tolerantes y susceptibles a la salinidad. Posteriormente, se realizó un segundo estudio (Experimento 2) donde se evaluó el efecto de la salinidad en la composición isotópica del carbono (δ13C) y el nitrógeno (δ15N) de genotipos de trigo duro y de dos amfiploides (un tritordeo y un triticale). Este trabajo está publicado en la revista “Journal of Experimental Botany”. En este segundo ensayo, la salinidad se aplicó durante la floración y el llenado del grano durante unas pocas semanas. Los resultados de este trabajo representaron la puesta a punto del estudio del comportamiento fisiológico del trigo duro durante la fase reproductiva y bajo diferentes combinaciones de salinidad y riego. Como continuación de los dos Experimentos (1 y 2) y en vista de los resultados obtenidos en el uso de las firmas isotópicas como criterio de evaluación bajo condiciones salinas, se planteó evaluar el uso combinado de la composición isotópica del carbono (δ13C), oxígeno (δ18O) y el nitrógeno (δ15N) en materia seca para observar las respuestas genotípicas de plantas de trigo duro sometidas a diferentes combinaciones de salinidad. Como contribución original, se elaboró un modelo conceptual de las tres firmas isotópicas juntas (δ13C, δ18O, δ15N) junto con características del metabolismo nitrogenado para explicar las diferencias genotípicas en tolerancia a distintas condiciones de salinidad y estrés hídrico. También se evaluaron las características fotosintéticas en relación con las firmas isotópicas y las actividades de enzimas clave del metabolismo nitrogenado. (Trabajo Publicado en la revista “New Phytologist”). Además de los resultados anteriores obtenidos, en esta Tesis se comparó la eficiencia de las firmas isotópicas del carbono, oxígeno y nitrógeno mediante dos vías: muestras de materia seca y muestras de fracción soluble en genotipos de trigo duro para la evaluación de diferencias genotípicas en tolerancia a diferentes condiciones de salinidad y regimenes hídricos. Posteriormente se analizó la respuesta genética de plantas de trigo duro a la salinidad evaluando el nivel de transcripción de genes específicos asociados a tolerancia a salinidad y estrés hídrico, junto a otros que codifican para enzimas claves del metabolismo nitrogenado. También se han estudiado las relaciones entre estas tasas de transcripción, las diferencias genotípicas en crecimiento, firmas isotópicas y actividades de enzimas del metabolismo nitrogenado. El trabajo ha mostrado la eficacia de los isótopos estables de carbono y del nitrógeno como herramientas de evaluación de la respuesta del trigo duro frente a la salinidad. / Inadequate irrigation for long term and under conditions of high evapotranspiration demand, combined with the use of poor water quality and the lack of adequate drainage frequently induces the salinization of arable land causing a significant increase in the area affected by salinity. Salinity is an environmental factor that limits in a remarkable manner the production of crops in many parts of the world, but especially in arid and semiarid regions like the Mediterranean. Under these conditions, which is often grown durum wheat improvement for tolerance to salinity under irrigation deficit may be one of the strategies to alleviate this problem. This Thesis shows that isotope compositions of carbon (δ13C), oxygen (δ18O), and nitrogen (δ15N) and the concentration of nitrogen in dry matter are potentially and effective criteria for discriminating between different growing conditions and between genotypes tolerant or susceptible to salt. Furthermore, the results of this study reflect the importance of nitrogen metabolism in tolerance to salinity. Additionally, this thesis develops a model relating genotypic tolerance to different conditions of salinity and drought with the signatures of the three isotopes (C, O, N), together with photosynthetic and transpiration exchanges and parameters key of nitrogen metabolism such as nitrogen concentration and activities of the glutamine synthetase and nitrate reductase. Finally, we study the relationship between the expression of genes potentially key in the tolerance to salinity and drought and genotypic variability in response to different combinations of these stresses.

Page generated in 0.4943 seconds