• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 26
  • 18
  • 17
  • 16
  • 3
  • 1
  • 1
  • Tagged with
  • 167
  • 73
  • 71
  • 39
  • 33
  • 30
  • 25
  • 25
  • 20
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

SystemC TLM2.0 Modeling of Network-on-Chip Architecture

January 2012 (has links)
abstract: Network-on-Chip (NoC) architectures have emerged as the solution to the on-chip communication challenges of multi-core embedded processor architectures. Design space exploration and performance evaluation of a NoC design requires fast simulation infrastructure. Simulation of register transfer level model of NoC is too slow for any meaningful design space exploration. One of the solutions to reduce the speed of simulation is to increase the level of abstraction. SystemC TLM2.0 provides the capability to model hardware design at higher levels of abstraction with trade-off of simulation speed and accuracy. In this thesis, SystemC TLM2.0 models of NoC routers are developed at three levels of abstraction namely loosely-timed, approximately-timed, and cycle accurate. Simulation speed and accuracy of these three models are evaluated by a case study of a 4x4 mesh NoC. / Dissertation/Thesis / M.S. Electrical Engineering 2012
22

Heterogeneous Cache Architecture in Network-on-Chips

Pattabiraman, Aishwariya January 2011 (has links)
No description available.
23

Micronetwork based system-on-FPGA (SOFPGA) architecture

Al-Araje, Abdul-Nasser 10 August 2005 (has links)
No description available.
24

Advanced System-Scale and Chip-Scale Interconnection Networks for Ultrascale Systems

Shalf, John Marshall 18 January 2011 (has links)
The path towards realizing next-generation petascale and exascale computing is increasingly dependent on building supercomputers with unprecedented numbers of processors. Given the rise of multicore processors, the number of network endpoints both on-chip and off-chip is growing exponentially, with systems in 2018 anticipated to contain thousands of processing elements on-chip and billions of processing elements system-wide. To prevent the interconnect from dominating the overall cost of future systems, there is a critical need for scalable interconnects that capture the communication requirements of target ultrascale applications. It is therefore essential to understand high-end application communication characteristics across a broad spectrum of computational methods, and utilize that insight to tailor interconnect designs to the specific requirements of the underlying codes. This work makes several unique contributions towards attaining that goal. First, the communication traces for a number of high-end application communication requirements, whose computational methods include: finite-difference, lattice-Boltzmann, particle-in-cell, sparse linear algebra, particle mesh ewald, and FFT-based solvers. This thesis presents an introduction to the fit-tree approach for designing network infrastructure that is tailored to application requirements. A fit-tree minimizes the component count of an interconnect without impacting application performance compared to a fully connected network. The last section introduces a methodology for reconfigurable networks to implement fit-tree solutions called Hybrid Flexibly Assignable Switch Topology (HFAST). HFAST uses both passive (circuit) and active (packet) commodity switch components in a unique way to dynamically reconfigure interconnect wiring to suit the topological requirements of scientific applications. Overall the exploration points to several promising directions for practically addressing both the on-chip and off-chip interconnect requirements of future ultrascale systems. / Master of Science
25

Déploiement d'applications parallèles sur une architecture distribuée matériellement reconfigurable / Deployment of parallel applications on a reconfigurable system on chip distributed architecture

Gamom Ngounou Ewo, Roland Christian 22 June 2015 (has links)
Parmi les cibles architecturales susceptibles d'être utilisées pour réaliser un système de traitement sur puce (SoC), les architectures reconfigurables dynamiquement (ARD) offrent un potentiel de flexibilité et de dynamicité intéressant. Cependant ce potentiel est encore difficile à exploiter pour réaliser des applications massivement parallèles sur puce. Dans nos travaux nous avons recensé et analysé les solutions actuellement proposées pour utiliser les ARD et nous avons constaté leurs limites parmi lesquelles : l'utilisation d'une technologie particulière ou d'architecture propriétaire, l'absence de prise en compte des applications parallèles, le passage à l'échelle difficile, l'absence de langage adopté par la communauté pour l'utilisation de la flexibilité des ARD, ...Pour déployer une application sur une ARD il est nécessaire de considérer l'hétérogénéité et la dynamicité de l'architecture matérielle d'une part et la parallélisation des traitements d'autre part. L'hétérogénéité permet d'avoir une architecture de traitement adaptée aux besoins fonctionnels de l'application. La dynamicité permet de prendre en compte la dépendance des applications au contexte et de la nature des données. Finalement, une application est naturellement parallèle.Dans nos travaux nous proposons une solution pour le déploiement sur une ARD d'une application parallèle en utilisant les flots de conception standard des SoC. Cette solution est appelée MATIP (MPI Application Task Integreation Platform) et utilise des primitives du standard MPI version 2 pour effectuer les communications et reconfigurer l'architecture de traitement. MATIP est une solution de déploiement au niveau de la conception basée plate-forme (PBD).La plateforme MATIP est modélisée en trois couches : interconnexion, communication et application. Nous avons conçu chaque couche pour que l'ensemble satisfasse les besoins en hétérogénéité et dynamicité des applications parallèles . Pour cela MATIP utilise une architecture à mémoire distribuée et exploite le paradigme de programmation parallèle par passage de message qui favorise le passage à l'échelle de la plateforme.MATIP facilite le déploiement d'une application parallèle sur puce à travers un template en langage Vhdl d'intégration de tâches. L'utilisation des primitives de communication se fait en invoquant des procédures Vhdl.MATIP libère le concepteur de tous les détails liés à l'interconnexion, la communication entre les tâches et à la gestion de la reconfiguration dynamique de la cible matérielle. Un démonstrateur de MATIP a été réalisée sur des FPGA Xilinx à travers la mise en oe{}uvre d'une application constituée de deux tâches statiques et deux tâches dynamiques. MATIP offre une bande passante de 2,4 Gb/s et une la latence pour le transfert d'un octet de 3,43 µs ce qui comparée à d'autres plateformes MPI (TMD-MPI, SOC-MPI, MPI HAL) met MATIP à l'état de l'art. / Among the architectural targets that could be buid a system on chip (SoC), dynamically reconfigurable architectures (DRA) offer interesting potential for flexibility and dynamicity . However this potential is still difficult to use in massively parallel on chip applications. In our work we identified and analyzed the solutions currently proposed to use DRA and found their limitations including: the use of a particular technology or proprietary architecture, the lack of parallel applications consideration, the difficult scalability, the lack of a common language adopted by the community to use the flexibility of DRA ...In our work we propose a solution for deployment on an DRA of a parallel application using standard SoC design flows. This solution is called MATIP ( textit {MPI Application Platform Task Integreation}) and uses primitives of MPI standard Version 2 to make communications and to reconfigure the MP-RSoC architecture . MATIP is a Platform-Based Design (PBD) level solution.The MATIP platform is modeled in three layers: interconnection, communication and application. Each layer is designed to satisfies the requirements of heterogeneity and dynamicity of parallel applications. For this, MATIP uses a distributed memory architecture and utilizes the message passing parallel programming paradigm to enhance scalability of the platform.MATIP frees the designer of all the details related to interconnection, communication between tasks and management of dynamic reconfiguration of the hardware target. A demonstrator of MATIP was performed on Xilinx FPGA through the implementation of an application consisting of two static and two dynamic hardware tasks. MATIP offers a bandwidth of 2.4 Gb / s and latency of 3.43 microseconds for the transfer of a byte. Compared to other MPI platforms (TMD-MPI, SOC-MPI MPI HAL), MATIP is in the state of the art.
26

EXPLORATION OF RUNTIME DISTRIBUTED MAPPING TECHNIQUES FOR EMERGING LARGE SCALE MPSOCS / EXPLORATION DE TECHNIQUES D’ALLOCATION DE TÂCHES DYNAMIQUES ET DISTRIBUÉES POUR MPSOCS DE LARGE ÉCHELLE

Grandi Mandelli, Marcelo 13 July 2015 (has links)
MPSoCs (systèmes multiprocesseurs sur puces) avec des centaines de cœurs sont déjà disponibles sur le marché. Selon le ITRS, ces systèmes intégreront des milliers de cœurs à la fin de la décennie. La définition du cœur, où chaque tâche sera exécutée dans le système, est une question majeure dans la conception de MPSoCs. Dans la littérature, cette question est définie comme allocation de tâches. La croissance du nombre de cœurs augmente la complexité de l'allocation de tâches. Les principales préoccupations en matière d'allocation de tâches dans des grands MPSoCs incluent: (i) l'évolutivité; (ii) la charge de travail dynamique; et (iii) la fiabilité. Il est nécessaire de distribuer la décision d'allocation de tâches à travers le système afin d'assurer l'évolutivité. La charge de travail de grands MPSoCs peut être dynamique, à savoir, de nouvelles applications peuvent commencer à tout moment, conduisant à différents scénarios d'allocation. Par conséquent, il est nécessaire d'exécuter le processus d'allocation à l'exécution pour soutenir une charge de travail dynamique. La fiabilité est étroitement liée à la distribution de la charge de travail du système. Un déséquilibre de charge peut générer des hotspots et autres implications thermiques, ce qui peut entraîner un fonctionnement peu fiable du système. Dans de grands MPSoCs, les problèmes de fiabilité empirent puisque l'augmentation du nombre de cœurs sur la même puce augmente la densité de puissance et, par conséquent, la température du système. La littérature présente différentes techniques d'allocation de tâches pour améliorer la fiabilité du système. Cependant, ces techniques utilisent des approches d'allocation centralisées, qui ne sont pas évolutives. Pour répondre à ces trois défis, l'objectif principal de cette Thèse est de proposer et évaluer des heuristiques d'allocation de tâches distribuées et dynamiques en assurant l'évolutivité et une distribution équitable de la charge de travail. Une distribution équitable de la charge de travail et du trafic du NoC (réseau sur puce) augmente la fiabilité du système dans le long terme, en raison de la minimisation des régions de hotspot. Pour permettre l'exploration de l'espace de conception de grands MPSoCs, la première contribution de cette Thèse se situe dans le cadre d'une modélisation multi-niveaux, qui prend en compte différents modèles et de capacités de débogage qui enrichissent et facilitent la conception des MPSoCs. La simulation de modèles de niveau inférieur (par exemple RTL) génère des paramètres de performance utilisés pour calibrer des modèles abstraits (sans précision d'horloge). Les modèles abstraits permettent d'explorer des heuristiques d'allocation de tâches dans de grands systèmes. La plupart des techniques d'allocation de tâches se focalisent sur l'optimisation du volume de communication, ce qui peut compromettre la fiabilité du système, en raison d'une surcharge des processeurs. D'autre part, une heuristique qui optimise seulement la distribution de la charge de travail peut surcharger le NoC et compromettre sa fiabilité. La deuxième contribution importante de cette Thèse est la proposition d'heuristiques d'allocation de tâches dynamiques et distribuées, qui réalisent un compromis entre le volume de communication (liens du NoC) et la distribution de la charge de travail (de l'utilisation des processeurs). Des résultats liés au temps d'exécution, au volume de la communication, à la consommation d'énergie, aux traces de puissance et à la distribution de la température dans les grands MPSoCs (144 processeurs) confirment l'hypothèse de compromis. Faire un compromis entre la réduction du volume de communication et une distribution équitable de la charge de travail améliore le système de manière fiable grâce à la réduction des régions de hotspots, sans compromettre la performance du système. / MPSoCs with hundreds of cores are already available in the market. According to the ITRS roadmap, such systems will integrate thousands of cores by the end of the decade. The definition of where each task will execute in the system is a major issue in the MPSoC design. In the literature, this issue is defined as task mapping. The growth in the number of cores increases the complexity of the task mapping. The main concerns in task mapping in large systems include: (i) scalability; (ii) dynamic workload; and (iii) reliability. It is necessary to distribute the mapping decision across the system to ensure scalability. The workload of emerging large MPSoCs may be dynamic, i.e., new applications may start at any moment, leading to different mapping scenarios. Therefore, it is necessary to execute the mapping process at runtime to support a dynamic workload. Reliability is tightly connected to the system workload distribution. Load imbalance may generate hotspots zones and consequently thermal implications, which may result in unreliable system operation. In large scale MPSoCs, reliability issues get worse since the growing number of cores on the same die increases power densities and, consequently, the system temperature. The literature presents different task mapping techniques to improve system reliability. However, such approaches use a centralized mapping approach, which are not scalable. To address these three challenges, the main goal of this Thesis is to propose and evaluate distributed mapping heuristics, executed at runtime, ensuring scalability and a fair workload distribution. Distributing the workload and the traffic inside the NoC increases the system reliability in long-term, due to the minimization of hotspot regions. To enable the design space exploration of large MPSoCs the first contribution of the Thesis lies in a multi-level modeling framework, which supports different models and debugging capabilities that enrich and facilitate the design of MPSoCs. The simulation of lower level models (e.g. RTL) generates performance parameters used to calibrate abstract models (e.g. untimed models). The abstract models pave the way to explore mapping heuristics in large systems. Most mapping techniques focus on optimizing communication volume in the NoC, which may compromise reliability due to overload processors. On the other hand, a heuristic optimizing only the workload distribution may overload NoC links, compromising its reliability. The second significant contribution of the Thesis is the proposition of dynamic and distributed mapping heuristics, making a tradeoff between communication volume (NoC links) and workload distribution (CPU usage). Results related to execution time, communication volume, energy consumption, power traces and temperature distribution in large MPSoCs (144 processors) confirm the tradeoff hypothesis. Trading off workload and communication volume improves system reliably through the reduction of hotspots regions, without compromising system performance.
27

Conception de systèmes programmables basés sur les NoC par synthèse de haut niveau : analyse symbolique et contrôle distribué / High level synthesis of NoC based programmable systems : symbolic analysis and distributed systems

Payet, Matthieu 26 October 2016 (has links)
Les réseaux sur puce (NoC pour «network on chip») sont des infrastructures de communication extensibles qui autorisent le parallélisme dans la communication. La conception de circuits basés sur les NoC se fait en considérant la communication et le calcul séparément, ce qui la rend plus complexe. Les outils de synthèse d'architecture (HLS pour «high level synthesis») permettent de générer rapidement des circuits performants. Mais le contrôle de ces circuits est centralisé et la communication est de type point-à-point (non extensible). Afin d'exploiter le parallélisme potentiel des algorithmes sur des FPGA dont les ressources augmentent constamment, les outils de HLS doivent extraire le parallélisme d'un programme et utiliser les ressources disponibles de manière optimisée. Si certains outils de synthèse considèrent une spécification de type flot de données, la plupart de concepteurs d'algorithmes utilise des programmes pour spécifier leurs algorithmes. Mais cette représentation comportementale doit souvent être enrichie d'annotations architecturales afin de produire en sortie un circuit optimisé. De plus, une solution complète d'accélération nécessite une intégration du circuit dans un environnement de développement, comme les GPU aujourd'hui. Un frein à l'adoption des FPGA et plus généralement des architectures parallèles, est la nécessaire connaissance des architectures matérielles ciblées.Dans cette thèse, nous présentons une méthode de synthèse qui utilise une technique d'analyse symbolique pour extraire le parallélisme d'une spécification algorithmique écrite dans un langage de haut niveau. Cette méthode introduit la synthèse de NoC pendant la synthèse d'architecture. Afin de dimensionner le circuit final, une modélisation mathématique du NoC est proposée afin d'estimer la consommation en ressources du circuit final. L'architecture générée est extensible et de type flot de données. Mais l'atout principal de l'architecture générée est son aspect programmable car elle permet, dans une certaine mesure, d'éviter les synthèses logiques pour modifier l'application / Network-on-Chip (NoC) introduces parallelism in communications and emerges with the growing integration of circuits as large designs need scalable communication architectures. This introduces the separation between communication tasks and processing tasks, and makes the design with NoC more complex. High level synthesis (HLS) tools can help designers to quickly generate high quality HDL (Hardware Description Level) designs. But their control schemes are centralized, usually using finite state machines. To take benefit from parallel algorithms and the ever growing FPGAs, HLS tools must properly extract the parallelism from the input representation and use the available resources efficiently. Algorithm designers are used with programming languages. This behavioral specification has to be enriched with architectural details for a correct optimization of the generated design. The C to FPGA path is not straightforward, and the need for architectural knowledges limits the adoption of FPGAs, and more generally, parallel architecture. In this thesis, we present a method that uses a symbolic analysis technique to extract the parallelism of an algorithmic specification written in a high level language. Parallelization skills are not required from the users. A methodology is then proposed for adding NoCs in the automatic design generation that takes the benefit of potential parallelizations. To dimension the design, we estimate the design resource consumption using a mathematical model for the NoC. A scalable application, hardware specific, is then generated using a High Level Synthesis flow. We provide a distributed mechanism for data path reconfiguration that allows different applications to run on the same set of processing elements. Thus, the output design is programmable and has a processor-less distributed control. This approach of using NoCs enables us to automatically design generic architectures that can be used on FPGA servers for High Performance Reconfigurable Computing. The generated design is programmable. This enable users to avoid the logic synthesis step when modifying the algorithm if a existing design provide the needed operators
28

Využití NIC, NOC klasifikací u klientů s hrudní drenáží. / Use NIC, NOC classification of clients with thoracic drainage.

OBERFALCEROVÁ, Eva January 2014 (has links)
The thesis deals with the application of NIC, NOC classifications in cases of patients with chest drainage. Nurses use nursing classification, nursing process and nursing documentation for their work to make the patient care more effective. Several objectives were set to meet the main target of the thesis. Firstly, to map nursing care specifics of patients with chest drainage; secondly, to map nurses' knowledge of chest drainage care; thirdly, to map nurses' satisfaction with nursing documentation; fourthly, to find out which NIC activities are usually used by nurses in the care of patients with chest drainage; fifthly, to find out which NOC indicators are usually judged by nurses in the care of patients with chest drainage; sixthly, to find out the benefits of NIC, NOC classification in the care of patients with chest drainage. For the practical part of the thesis, the combination of qualitative and quantitative research was chosen. The quantitative research was conducted by a survey. The studied group consisted of 152 nurses. For the quantitative research, we set up the following hypothesis. H1 - the care of patients with chest drainage depands on particular department. H2 - nurses' knowledge of chest drainage care depands on particular department. H3 - nurses' satisfaction with nursing documentation depends on their education. The qualitative reserch was hold in two phases. In the first phase, a nursing documentation was created on the basis of NIC and NOC classification related to care of chest tubes. In the second phase of the qualitative research, we used a semi-structured interview to interview ten nurse who had worked with the particular nursing documentation and who had met the criteria for the selection of experts acording to Fehring . Several research questions were set for the qualitative research. What do the nurses think about the particular nursing documentation?
29

Méthodologies de conception ASIC pour des systèmes sur puce 3D hétérogènes à base de réseaux sur puce 3D / ASIC Design Methodologies for 3D NOC Based 3D Heterogeneous Multiprocessor on Chip

Jabbar, Mohamad 21 March 2013 (has links)
Dans cette thèse, nous étudions les architectures 3D NoC grâce à des implémentations de conception physiques en utilisant la technologie 3D réel mis en oeuvre dans l'industrie. Sur la base des listes d'interconnexions en déroute, nous procédons à l'analyse des performances d'évaluer le bénéfice de l'architecture 3D par rapport à sa mise en oeuvre 2D. Sur la base du flot de conception 3D proposé en se concentrant sur la vérification temporelle tirant parti de l'avantage du retard négligeable de la structure de microbilles pour les connexions verticales, nous avons mené techniques de partitionnement de NoC 3D basé sur l'architecture MPSoC y compris empilement homogène et hétérogène en utilisant Tezzaron 3D IC technlogy. Conception et mise en oeuvre de compromis dans les deux méthodes de partitionnement est étudiée pour avoir un meilleur aperçu sur l'architecture 3D de sorte qu'il peut être exploitée pour des performances optimales. En utilisant l'approche 3D homogène empilage, NoC topologies est explorée afin d'identifier la meilleure topologie entre la topologie 2D et 3D pour la mise en œuvre MPSoC 3D sous l'hypothèse que les chemins critiques est fondée sur les liens inter-routeur. Les explorations architecturales ont également examiné les différentes technologies de traitement. mettant en évidence l'effet de la technologie des procédés à la performance d'architecture 3D en particulier pour l'interconnexion dominant du design. En outre, nous avons effectué hétérogène 3D d'empilage pour la mise en oeuvre MPSoC avec l'approche GALS de style et présenté plusieurs analyses de conception physiques connexes concernant la conception 3D et la mise en œuvre MPSoC utilisant des outils de CAO 2D. Une analyse plus approfondie de l'effet microbilles pas à la performance de l'architecture 3D à l'aide face-à-face d'empilement est également signalé l'identification des problèmes et des limitations à prendre en considération pendant le processus de conception. / In this thesis, we study the exploration 3D NoC architectures through physical design implementations using real 3D technology used in the industry. Based on the proposed 3D design flow focusing on timing verification by leveraging the benefit of negligible delay of microbumps structure for vertical connections, we have conducted partitioning techniques for 3D NoC-based MPSoC architecture including homogeneous and heterogeneous stacking using Tezzaron 3D IC technlogy. Design and implementation trade-off in both partitioning methods is investigated to have better insight about 3D architecture so that it can be exploited for optimal performance. Using homogeneous 3D stacking approach, NoC architectures are explored to identify the best topology between 2D and 3D topology for 3D MPSoC implementation. The architectural explorations have also considered different process technologies highlighting the wire delay effect to the 3D architecture performance especially for interconnect-dominated design. Additionally, we performed heterogeneous 3D stacking of NoC-based MPSoC implementation with GALS style approach and presented several physical designs related analyses regarding 3D MPSoC design and implementation using 2D EDA tools. Finally we conducted an exploration of 2D EDA tool on different 3D architecture to evaluate the impact of 2D EDA tools on the 3D architecture performance. Since there is no commercialize 3D design tool until now, the experiment is important on the basis that designing 3D architecture using 2D EDA tools does not have a strong and direct impact to the 3D architecture performance mainly because the tools is dedicated for 2D architecture design.
30

Algoritmo de prefetching de dados temporizado para sistemas multiprocessadores baseados em NOC

SILVEIRA, Maria Cireno Ribeiro 09 March 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-03-15T13:58:26Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) UFPE-MEI 2015-078 - Maria Cireno Ribeiro Silveira.pdf: 4578273 bytes, checksum: 1c434494e0c03cb02156a37ebfd1c7da (MD5) / Made available in DSpace on 2016-03-15T13:58:26Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) UFPE-MEI 2015-078 - Maria Cireno Ribeiro Silveira.pdf: 4578273 bytes, checksum: 1c434494e0c03cb02156a37ebfd1c7da (MD5) Previous issue date: 2015-03-09 / O prefetching é uma técnica considerada e ciente para mitigar um problema já conhecido em sistemas computacionais: a diferença entre o desempenho do processador e do acesso à memória. O objetivo do prefetching é aproximar o dado do processador retirando-o da memória e carregando na cache local. Uma vez que o dado seja requisitado pelo processador, ele já estará disponível na cache, reduzindo a taxa de perdas e a penalidade do sistema. Para sistemas multiprocessadores baseados em NoCs a e ciência do prefetching é ainda mais crítica em relação ao desempenho, uma vez que o tempo de acesso ao dado varia dependendo da distância entre processador e memória e do tráfego da rede. Este trabalho propõe um algoritmo de prefetching de dados temporizado, que tem como objetivo minimizar a penalidade dos núcleos através uma solução de prefetching baseada em predição de tempo para sistemas multiprocessadores baseados em NoC. O algoritmo utiliza um processo pró-ativo iniciado pelo servidor para realizar requisições de prefetching baseado no histórico de perdas de cache e informações da NoC. Nos experimentos realizados para 16 núcleos, o algoritmo proposto reduziu a penalidade dos processadores em 53,6% em comparação com o prefetching baseado em eventos (faltas na cache), sendo a maior redução de 29% da penalidade. / The prefetching technique is an e ective approach to mitigate a well-known problem in multi-core processors: the gap between computing and data access performance. The goal of prefetching is to approximate data to the CPU by retrieving the data from the memory and loading it in the cache. When the data is requested by the CPU, it is already available in the cache, reducing the miss rate and penalty. In multiprocessor NoC-based systems the prefetching e ciency is even more critical to system performance, since the access time depends of the distance between the requesting processor and the memory and also of the network tra c. This work proposes a temporized data prefetching algorithm that aims to minimize the penalty of the cores through one prefetching solution based on time prediction for multiprocessor NoC-based systems. The algorithm utilizes a proactive process initiated by the server to request prefetching data based on cache miss history and NoC's information. In the experiments for 16 cores, the proposed algorithm has successfully reduced the processors penalty in 53,6% compared to the event-based prefetching and the best case was a penalty reduction of 29%.

Page generated in 0.4158 seconds