Spelling suggestions: "subject:"noble"" "subject:"doble""
121 |
Using high resolution satellite imagery to map aquatic macropyhtes on multiple lakes in northern IndianaGidley, Susan 08 December 2009 (has links)
Resource managers need to be able to quickly and accurately map aquatic plants in freshwater lakes and ponds for regulatory purposes, to monitor the health of native species and to monitor the spread of invasive species. Site surveys and transects are expensive and time consuming, and low resolution imagery is not detailed enough to map multiple, small lakes spread out over large areas. This study evaluated methods for mapping aquatic plants using high resolution Quickbird satellite imagery obtained in 2007 and 2008. The study area included nine lakes in northern Indiana chosen because they are used for recreation, have residential development along their shorelines, support a diverse wildlife population, and are susceptible to invasive species. An unsupervised classification was used to develop two levels of classification. The Level I classification divided the vegetation into detailed classes of emergent and submerged vegetation based on plant structure. In the Level II classification, these classes were combined into more general categories. Overall accuracy of the Level I classification was 68% for the 2007 imagery and 58% for the 2008 imagery. The overall accuracy of the Level II classification was higher for both the 2007 and 2008 imagery at 75% and 74%, respectively. Classes containing bulrushes were the least accurately mapped in the Level I classification. In the Level II classification, the least accurately mapped class was submerged vegetation. Water and man-made surfaces were mapped with the highest degree of accuracy in both classification schemes. Overhanging trees and shore vegetation contributed to classification error. Overall, results of this research suggest that high resolution imagery provides useful information for natural resource managers. It is most applicable to mapping general aquatic vegetation categories, such as submerged and emergent vegetation, and providing general estimates of plant coverage in lakes. Better methods for mapping individual species, species assemblages, and submerged vegetation constitute areas for further research. / Indiana University-Purdue University Indianapolis (IUPUI)
|
122 |
Using high resolution satellite imagery to map aquatic macropyhtes on multiple lakes in northern IndianaGidley, Susan 08 December 2009 (has links)
Resource managers need to be able to quickly and accurately map aquatic plants in freshwater lakes and ponds for regulatory purposes, to monitor the health of native species and to monitor the spread of invasive species. Site surveys and transects are expensive and time consuming, and low resolution imagery is not detailed enough to map multiple, small lakes spread out over large areas. This study evaluated methods for mapping aquatic plants using high resolution Quickbird satellite imagery obtained in 2007 and 2008. The study area included nine lakes in northern Indiana chosen because they are used for recreation, have residential development along their shorelines, support a diverse wildlife population, and are susceptible to invasive species. An unsupervised classification was used to develop two levels of classification. The Level I classification divided the vegetation into detailed classes of emergent and submerged vegetation based on plant structure. In the Level II classification, these classes were combined into more general categories. Overall accuracy of the Level I classification was 68% for the 2007 imagery and 58% for the 2008 imagery. The overall accuracy of the Level II classification was higher for both the 2007 and 2008 imagery at 75% and 74%, respectively. Classes containing bulrushes were the least accurately mapped in the Level I classification. In the Level II classification, the least accurately mapped class was submerged vegetation. Water and man-made surfaces were mapped with the highest degree of accuracy in both classification schemes. Overhanging trees and shore vegetation contributed to classification error. Overall, results of this research suggest that high resolution imagery provides useful information for natural resource managers. It is most applicable to mapping general aquatic vegetation categories, such as submerged and emergent vegetation, and providing general estimates of plant coverage in lakes. Better methods for mapping individual species, species assemblages, and submerged vegetation constitute areas for further research. / Indiana University-Purdue University Indianapolis (IUPUI)
|
123 |
Using high resolution satellite imagery to map aquatic macropyhtes on multiple lakes in northern IndianaGidley, Susan 08 December 2009 (has links)
Resource managers need to be able to quickly and accurately map aquatic plants in freshwater lakes and ponds for regulatory purposes, to monitor the health of native species and to monitor the spread of invasive species. Site surveys and transects are expensive and time consuming, and low resolution imagery is not detailed enough to map multiple, small lakes spread out over large areas. This study evaluated methods for mapping aquatic plants using high resolution Quickbird satellite imagery obtained in 2007 and 2008. The study area included nine lakes in northern Indiana chosen because they are used for recreation, have residential development along their shorelines, support a diverse wildlife population, and are susceptible to invasive species. An unsupervised classification was used to develop two levels of classification. The Level I classification divided the vegetation into detailed classes of emergent and submerged vegetation based on plant structure. In the Level II classification, these classes were combined into more general categories. Overall accuracy of the Level I classification was 68% for the 2007 imagery and 58% for the 2008 imagery. The overall accuracy of the Level II classification was higher for both the 2007 and 2008 imagery at 75% and 74%, respectively. Classes containing bulrushes were the least accurately mapped in the Level I classification. In the Level II classification, the least accurately mapped class was submerged vegetation. Water and man-made surfaces were mapped with the highest degree of accuracy in both classification schemes. Overhanging trees and shore vegetation contributed to classification error. Overall, results of this research suggest that high resolution imagery provides useful information for natural resource managers. It is most applicable to mapping general aquatic vegetation categories, such as submerged and emergent vegetation, and providing general estimates of plant coverage in lakes. Better methods for mapping individual species, species assemblages, and submerged vegetation constitute areas for further research. / Indiana University-Purdue University Indianapolis (IUPUI)
|
124 |
Using high resolution satellite imagery to map aquatic macropyhtes on multiple lakes in northern IndianaGidley, Susan 08 December 2009 (has links)
Resource managers need to be able to quickly and accurately map aquatic plants in freshwater lakes and ponds for regulatory purposes, to monitor the health of native species and to monitor the spread of invasive species. Site surveys and transects are expensive and time consuming, and low resolution imagery is not detailed enough to map multiple, small lakes spread out over large areas. This study evaluated methods for mapping aquatic plants using high resolution Quickbird satellite imagery obtained in 2007 and 2008. The study area included nine lakes in northern Indiana chosen because they are used for recreation, have residential development along their shorelines, support a diverse wildlife population, and are susceptible to invasive species. An unsupervised classification was used to develop two levels of classification. The Level I classification divided the vegetation into detailed classes of emergent and submerged vegetation based on plant structure. In the Level II classification, these classes were combined into more general categories. Overall accuracy of the Level I classification was 68% for the 2007 imagery and 58% for the 2008 imagery. The overall accuracy of the Level II classification was higher for both the 2007 and 2008 imagery at 75% and 74%, respectively. Classes containing bulrushes were the least accurately mapped in the Level I classification. In the Level II classification, the least accurately mapped class was submerged vegetation. Water and man-made surfaces were mapped with the highest degree of accuracy in both classification schemes. Overhanging trees and shore vegetation contributed to classification error. Overall, results of this research suggest that high resolution imagery provides useful information for natural resource managers. It is most applicable to mapping general aquatic vegetation categories, such as submerged and emergent vegetation, and providing general estimates of plant coverage in lakes. Better methods for mapping individual species, species assemblages, and submerged vegetation constitute areas for further research. / Indiana University-Purdue University Indianapolis (IUPUI)
|
125 |
Using high resolution satellite imagery to map aquatic macropyhtes on multiple lakes in northern IndianaGidley, Susan 08 December 2009 (has links)
Resource managers need to be able to quickly and accurately map aquatic plants in freshwater lakes and ponds for regulatory purposes, to monitor the health of native species and to monitor the spread of invasive species. Site surveys and transects are expensive and time consuming, and low resolution imagery is not detailed enough to map multiple, small lakes spread out over large areas. This study evaluated methods for mapping aquatic plants using high resolution Quickbird satellite imagery obtained in 2007 and 2008. The study area included nine lakes in northern Indiana chosen because they are used for recreation, have residential development along their shorelines, support a diverse wildlife population, and are susceptible to invasive species. An unsupervised classification was used to develop two levels of classification. The Level I classification divided the vegetation into detailed classes of emergent and submerged vegetation based on plant structure. In the Level II classification, these classes were combined into more general categories. Overall accuracy of the Level I classification was 68% for the 2007 imagery and 58% for the 2008 imagery. The overall accuracy of the Level II classification was higher for both the 2007 and 2008 imagery at 75% and 74%, respectively. Classes containing bulrushes were the least accurately mapped in the Level I classification. In the Level II classification, the least accurately mapped class was submerged vegetation. Water and man-made surfaces were mapped with the highest degree of accuracy in both classification schemes. Overhanging trees and shore vegetation contributed to classification error. Overall, results of this research suggest that high resolution imagery provides useful information for natural resource managers. It is most applicable to mapping general aquatic vegetation categories, such as submerged and emergent vegetation, and providing general estimates of plant coverage in lakes. Better methods for mapping individual species, species assemblages, and submerged vegetation constitute areas for further research. / Indiana University-Purdue University Indianapolis (IUPUI)
|
126 |
Using high resolution satellite imagery to map aquatic macropyhtes on multiple lakes in northern IndianaGidley, Susan 08 December 2009 (has links)
Resource managers need to be able to quickly and accurately map aquatic plants in freshwater lakes and ponds for regulatory purposes, to monitor the health of native species and to monitor the spread of invasive species. Site surveys and transects are expensive and time consuming, and low resolution imagery is not detailed enough to map multiple, small lakes spread out over large areas. This study evaluated methods for mapping aquatic plants using high resolution Quickbird satellite imagery obtained in 2007 and 2008. The study area included nine lakes in northern Indiana chosen because they are used for recreation, have residential development along their shorelines, support a diverse wildlife population, and are susceptible to invasive species. An unsupervised classification was used to develop two levels of classification. The Level I classification divided the vegetation into detailed classes of emergent and submerged vegetation based on plant structure. In the Level II classification, these classes were combined into more general categories. Overall accuracy of the Level I classification was 68% for the 2007 imagery and 58% for the 2008 imagery. The overall accuracy of the Level II classification was higher for both the 2007 and 2008 imagery at 75% and 74%, respectively. Classes containing bulrushes were the least accurately mapped in the Level I classification. In the Level II classification, the least accurately mapped class was submerged vegetation. Water and man-made surfaces were mapped with the highest degree of accuracy in both classification schemes. Overhanging trees and shore vegetation contributed to classification error. Overall, results of this research suggest that high resolution imagery provides useful information for natural resource managers. It is most applicable to mapping general aquatic vegetation categories, such as submerged and emergent vegetation, and providing general estimates of plant coverage in lakes. Better methods for mapping individual species, species assemblages, and submerged vegetation constitute areas for further research. / Indiana University-Purdue University Indianapolis (IUPUI)
|
127 |
Plasma modification on carbon black surface: From reactor design to final applicationsTricàs Rosell, Núria 01 June 2007 (has links)
El present treball es basa en l'estudi de la modificació de la superfície del negre de carboni (NC) per mitjà de tècniques de plasma. Tot i que aquest tipus de tractament s'utilitza de manera comú sobre superfícies planes, tanmateix encara existeixen problemes a l'hora de treballar en materials en pols degut a la dificultat que suposa la seva manipulació. En aquest treball s'ha modificat NC tant per tècniques de plasma a baixa pressió com per mitjà de tècniques de plasma atmosfèric. Per tal d'assolir aquest objectiu s'han posat a punt tres reactors de plasma capaços de modificar aquest tipus de material; dos reactors treballen a baixa pressió mentre que el tercer es tracta d'un equip a pressió atmosfèrica.Els sistemes de plasma a baixa pressió utilitzats han estat un reactor down-stream i un reactor de llit fluiditzat. Ambdós sistemes utilitzen un generador de radio freqüències a 13,56MHz per tal de general el plasma. Tots dos sistemes han estat optimitzats per la modificació de materials en pols. En el cas del reactor down-stream, s'ha estudiat a posició d'entrada del gas reactiu, la potència del generador i el temps de modificació per a tres tipus de tractament: oxigen, nitrogen i amoníac. En el cas del reactor de llit fluiditzat, els paràmetres que s'han estudiat han estat la distància entre la pols i la zona de generació de plasma, la mida de la partícula i la porositat de la placa suport.Pel que fa a la modificació mitjançant la utilització de plasma atmosfèric, s'ha dissenyat un sistema que permet utilitzar una torxa de plasma atmosfèric comercial (Openair® de Plasmatreat GmbH) per tal de modificar materials en pols. Aquest sistema consisteix en un reactor adaptable a la torxa de plasma atmosfèric on té lloc la modificació, un sistema d'introducció de la pols dins de la zona de reacció així com també un sistema de refredament i col·lecció del material modificat que conjuntament permeten un funcionament quasi-continu del tractament.S'ha utilitzat el reactor down-stream i el reactor a pressió atmosfèrica per tal de modificar tres tipus diferents de negre de carboni (N134, XPB 171 i Vulcan XC-72). D'altra banda, s'ha grafititzat i extret el N134 prèviament a la modificació per tal de realitzar un estudi sobre la influència de l'estructura superficial així com també de la presència d'impureses sobre la superfície del NC. L'oxidació i l'augment de nitrogen en superfície han estat les dues modificacions que s'han estudiat principalment per tal de comparar el resultat obtingut per les tècniques presentades.El NC s'ha caracteritzat mitjançant diverses tècniques analítiques per tal de poder obtenir informació sobre els canvis produïts durant la modificació per plasma. Aquestes tècniques inclouen superfície específica, XRD, WAXS, STM per tal d'estudiar els canvis en la seva morfologia i estructura de la superfície. D'altra banda, per tal d'estudiar els canvis en la composició química s'han emprat mesures de pH, valoracions àcid/base i XPS.Finalment, alguns dels negres de caboni modificats han estat seleccionats per tal de ser avaluats en aplicacions finals tal i com són el reforçament d'elastòmers i la seva activitat vers la reducció d'oxigen utilitzada en les PEMFC per tal d'eliminar els metalls nobles. En el primer cas, s'ha estudiat l'efecte sobre la cinètica i el mecanisme de vulcanització del negre de carboni modificat mitjançant el plasma atmosfèric. Aquest estudi s'ha dut a terme utilitzant dues tècniques complementaries com són les corbes reomètriques i la vulcanització de molècules model (MCV). També s'han realitzat mesures d'adsorció de polímer sobre el NC i Bound Rubber per tal d'estudiar la interacció polímer-càrrega la qual presenta una gran influència en les propietats finals dels materials. D'altra banda, s'ha estudiat també la capacitat del NC modificat vers a la reducció d'oxigen a partir de voltametria cíclica i s'han determinat les propietats del NC que poden influir de manera rellevant en l'activitat cataítica final del NC per a aquesta reacció. Tot i que es necessari fer una preparació posterior al tractament de plasma per a aquesta aplicació, el material final pot contribuir notablement a la eliminació de metalls nobles com a catalitzadors de reducció d'oxigen en les Piles de Combustible. / The present works deals with plasma modification of carbon black (CB). Although this type of treatment is widely used on flat surfaces handling problems should be overcome in order to treat powders as CB. In this study CB has been modified both by means of low-pressure and atmospheric pressure non-equilibrium plasmas. In order to accomplish this objective three different plasma reactors have been set-up; two at low pressure and one at atmospheric pressure working conditions.Low pressure plasma reactors utilised in this work consist in a down-stream and a fluidised bed system working at Radio Frequency generation power (RF 13,56 MHz). Both reactors have been optimized to treat powder materials. For the down-stream reactor, position of the reactive gas inlet, and treatment conditions such as generator power and time have been studied for oxygen, nitrogen and ammonia treatments. For the fluidized bed reactor the distance of the powder sample to the plasma generation zone, particle size and support porosity have been taken into account. Concerning atmospheric plasma, a device has been set up in order to adapt a commercial plasma torch (Openair® from Plasmatreat GmbH), for powder modification. An adaptable reactor, a method to introduce the powder in the plasma zone as well as a collecting system had been developed in order to obtain a quasi-continuous modification treatment.Three types of CBs, N134, XPB 171 and Vulcan XC-72 have been modified in both the down-stream and the atmospheric plasma system. Graphitization and extraction of N134 were also carried out before plasma modification in order to study the effect of both impurities and surface structure of the CB during plasma modification. Surface oxidation and nitrogen enrichment were the two main studied treatments in both systems which allowed comparing their performances.Unmodified and Modified CBs have been characterised from several points of view. Specific surface area, XRD, WAXS and STM have been used in order to study morphological and surface structure changes. On the other hand, pH measurements, acid/base titration and XPS were employed in order to study the surface chemistry composition changes that had taken place during plasma modification. Some of the modified CB grades were selected in order to be tested in final applications such as rubber reinforcement and oxygen reduction non-noble metal catalyst for PEMFC. In the first case, the effect of atmospheric plasma treatment on the vulcanization kinetics and mechanism has been evaluated both by rheometre curves and the model compounding approach. Studies about the polymer-filler interaction have been also carried out by calculating bound rubber and adsorption from polymer solution. Last but not least, plasma modification capacity to enhance the oxygen reduction activity to obtain non-noble metal catalysts for PEMFC has been evaluated after the correspondent preparation. Oxygen reduction activity has been studied by means of cyclic voltammetry. The main CB properties which could play an important role in such applications have been analyzed.
|
128 |
Using high resolution satellite imagery to map aquatic macropyhtes on multiple lakes in northern IndianaGidley, Susan 08 December 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Resource managers need to be able to quickly and accurately map aquatic plants in freshwater lakes and ponds for regulatory purposes, to monitor the health of native species and to monitor the spread of invasive species. Site surveys and transects are expensive and time consuming, and low resolution imagery is not detailed enough to map multiple, small lakes spread out over large areas. This study evaluated methods for mapping aquatic plants using high resolution Quickbird satellite imagery obtained in 2007 and 2008. The study area included nine lakes in northern Indiana chosen because they are used for recreation, have residential development along their shorelines, support a diverse wildlife population, and are susceptible to invasive species. An unsupervised classification was used to develop two levels of classification. The Level I classification divided the vegetation into detailed classes of emergent and submerged vegetation based on plant structure. In the Level II classification, these classes were combined into more general categories. Overall accuracy of the Level I classification was 68% for the 2007 imagery and 58% for the 2008 imagery. The overall accuracy of the Level II classification was higher for both the 2007 and 2008 imagery at 75% and 74%, respectively. Classes containing bulrushes were the least accurately mapped in the Level I classification. In the Level II classification, the least accurately mapped class was submerged vegetation. Water and man-made surfaces were mapped with the highest degree of accuracy in both classification schemes. Overhanging trees and shore vegetation contributed to classification error. Overall, results of this research suggest that high resolution imagery provides useful information for natural resource managers. It is most applicable to mapping general aquatic vegetation categories, such as submerged and emergent vegetation, and providing general estimates of plant coverage in lakes. Better methods for mapping individual species, species assemblages, and submerged vegetation constitute areas for further research.
|
129 |
S2 State Photodissociation of Diphenylcyclopropenone, Vibrational Energy Transfer along Aliphatic Chains, and Energy Calculations of Noble Gas-Halide ClustersVennekate, Hendrik 26 May 2014 (has links)
No description available.
|
130 |
Efeitos de promotores no desempenho catalítico do cobalto suportado em nanofibras de carbono na síntese de Fischer-Tropsch / Promoter effects on catalytic performance of cobalt supported on carbon nanofibers in the Fischer-Tropsch synthesisCarvalho, André 06 October 2014 (has links)
A síntese de Fischer-Tropsch é um processo de conversão do gás de síntese (CO + H2) em hidrocarbonetos de cadeias longas. Os catalisadores clássicos para a hidrogenação do CO são, principalmente, o Fe e o Co suportados em diferentes óxidos. O desempenho catalítico do catalisador é influenciado pelo tamanho, dispersão e grau de redução das partículas metálicas. Estudos recentes mostram uma promissora aplicação de materiais à base de nanofibras de carbono na catálise heterogênea. Estes materiais apresentam algumas vantagens em relação aos suportes catalíticos tradicionais, tais como: uma baixa interação metal-suporte, elevada área superficial, ausência de poros fechados, alta condutividade térmica, elevada inércia química e hidrofobicidade. Neste trabalho foram fabricados suportes catalíticos macroscópicos à base de nanofibras de carbono, empregando o método de vapor deposição, a partir da decomposição do etano. Os catalisadores foram preparados pela impregnação incipiente do Co e de promotores na superfície do suporte. Foram empregados os metais nobres, Ir, Pt e Ru, como promotores catalíticos, com o objetivo de incrementar a redutibilidade e a atividade do catalisador. Todos os catalisadores foram caracterizados por Quimissorção de CO, Fisissorção de N2, Redução a Temperatura Programada (TPR), Espectroscopia Fotoeletrônica de Raios X (XPS) e Microscopia Eletrônica de Transmissão (MET). Os catalisadores foram, então, testados na síntese de Fischer-Tropsch, utilizando um reator de leito fixo e fluxo contínuo, com análise simultânea dos produtos gasosos e controle sistemático da temperatura, pressão e vazão dos reagentes. Finalmente, foram analisados os produtos líquidos obtidos na reação com objetivo de conhecer a influência dos promotores na seletividade dos hidrocarbonetos formados. / Fischer-Tropsch synthesis is a process of converting the syngas (CO + H2) to long-chain hydrocarbons. The traditional catalysts for the CO hydrogenation are Fe and Co supported on different oxides. Catalytic performance of the catalyst is influenced by size, dispersion and degree of reduction of metal particles. Recent studies show a promising application of materials based on carbon nanofibers in heterogeneous catalysis. These materials have some advantages compared to traditional catalyst supports, such as a low metal support interaction, high surface area, no closed pores, high thermal conductivity, high chemical resistance, and hydrophobicity. In this work, based on macroscopic carbon nanofiber catalyst supports have been manufactured by employing the method of chemical vapor deposition from ethane decomposition. Catalysts were prepared by incipient wetness impregnation of Co and promoters on the support surface. Noble metals, Ir, Pt and Ru were used as catalytic promoters, with the aim of increasing the reductibility and catalyst activity. All catalysts were characterized by CO Chemisorption, N2 Physisorption, Temperature Programmed Reduction (TPR), X-ray Photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM). The catalysts were then tested in the Fischer-Tropsch synthesis using a fixed bed reactor, continuous flow, with simultaneous analysis of gaseous products and systematic temperature control, pressure, and flow rate of the reactants. Finally, the liquid products obtained in the reaction were analyzed in order to determine the influence of promoters on the selectivity of hydrocarbons formed.
|
Page generated in 0.0329 seconds