• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 342
  • 124
  • 71
  • 52
  • 48
  • 29
  • 20
  • 10
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 846
  • 110
  • 84
  • 64
  • 56
  • 54
  • 49
  • 49
  • 46
  • 46
  • 44
  • 44
  • 42
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Certain Diagonal Equations over Finite Fields

Sze, Christopher 29 May 2009 (has links)
Let Fqt be the finite field with qt elements and let F*qt be its multiplicative group. We study the diagonal equation axq−1 + byq−1 = c, where a,b and c ∈ F*qt. This equation can be written as xq−1+αyq−1 = β, where α, β ∈ F ∗ q t . Let Nt(α, β) denote the number of solutions (x,y) ∈ F*qt × F*qt of xq−1 + αyq−1 = β and I(r; a, b) be the number of monic irreducible polynomials f ∈ Fq[x] of degree r with f(0) = a and f(1) = b. We show that Nt(α, β) can be expressed in terms of I(r; a, b), where r | t and a, b ∈ F*q are related to α and β. A recursive formula for I(r; a, b) will be given and we illustrate this by computing I(r; a, b) for 2 ≤ r ≤ 4. We also show that N3(α, β) can be expressed in terms of the number of monic irreducible cubic polynomials over Fq with prescribed trace and norm. Consequently, N3(α, β) can be expressed in terms of the number of rational points on a certain elliptic curve. We give a proof that given any a, b ∈ F*q and integer r ≥ 3, there always exists a monic irreducible polynomial f ∈ Fq[x] of degree r such that f(0) = a and f(1) = b. We also use the result on N2(α, β) to construct a new family of planar functions.
242

Laser Nonlinear Propagation In Gases: The Properties And Applications

Zhou, Bing 28 June 2011 (has links) (PDF)
When an intense femtosecond laser pulse propagates in a gas, it undergoes filamentation, a spectacular process where the pulse spatial, spectral and temporal characteristics change considerably. A thin short-lived plasma column is formed in the wake of the propagating pulse. My PhD work has been dedicated to the further understanding of the filamentation process. In a first part, I compare the properties of a usual filament with those of a filament formed by a femtosecond laser pulse with a Bessel beam profile. Using a laser pulse of same intensity and duration, I show that a Bessel beam can form a longer and more uniform plasma column in air, but that the plasma density is significantly lower. In a second part, I show that it is possible to increase considerably the lifetime of the plasma column, using a dual femtosecond/nanosecond laser pulse technique. To obtain an increased lifetime over a significant segment of a plasma column, I rely on the properties of Bessel beams in the nonlinear regime developed in the first chapter. In a third part, I study the dynamics of free electrons that are produced in the filamentation process. To do this, I have developed a specially designed current probe. Experiments reveal a very rich behaviour. The longitudinal displacements of electrons in the plasma column depend sensitively on the nature of the gas and its pressure as well as on the laser polarization of the laser. I propose a model to explain this behaviour. The direction of electron flow results from the competition between pure laser forces and a Coulomb wake field force. In the last chapter, I study filamentation in a Helium gas. This required improving the laser characteristics in order to reach the necessary power for filamentation. Improved characteristics have been achieved by implementing a planar compression stage which shortened the laser pulse from 50 fs to 10 fs without appreciable energy loss. The first experimental evidence for filamentation in He is presented at the end of the thesis. Agreement is found with a numerical simulation.
243

Maximum flow in planar digraphs

Harutyunyan, Anna 30 November 2012 (has links)
Worst-case analysis is often meaningless in practice. Some problems never reach the anticipated worst-case complexity. Other solutions get bogged down with impractical constants during implementation, despite having favorable asymptotic running times. In this thesis, we investigate these contrasts in the context of finding maximum flows in planar digraphs. We suggest analytic techniques that adapt to the problem instance, and present a structural property that concludes equivalence between shortest paths and maximum st-flow in planar graphs. The best known algorithm for maximum st-flow in directed planar graphs is an augmenting- paths algorithm with O(n) iterations. Using dynamic trees, each iteration can be implemented in O(log n) time. Long before, Itai and Shiloach showed that when s and t are on the boundary of a common face, the O(n)-iteration augmenting-paths algorithm is equivalent to Dijkstra's algorithm in the graph���s dual: the max st-planar st-flow problem can be solved with one single-source shortest-path computation. In this thesis we show that (a) when s and t are separated by p faces, the max st-flow can be found with at most 2p single-source shortest-path computations, which, using the linear-time shortest-paths algorithm for planar graphs, results in an O(np)-time algorithm, and (b) that the equivalence between augmenting-paths and Dijkstra's extends to the most general non-st-planar digraphs, using their half-infinite universal cover graph. / Graduation date: 2013
244

Etch rate modification by implantation of oxide and polysilicon for planar double gate MOS fabrication

Charavel, Rémy 31 January 2007 (has links)
In the context of transistor size miniaturization the motivation of this work was focused on the fabrication process of planar double gate devices. We proposed in this work three process flows based on the use of buried mask which could allow the fabrication of self-aligned planar double gate transistors. The novel concept of buried mask consists into modifying the etch rate of a buried polysilicon or oxide layer. This etch rate modification being defined by ion implantation, etch stop or scacrificial zones aligned with the implantation mask can thus be fabricated. This technique solve the alignment of the front and back gate. Ion implantation causes damages to the implanted target, and is used to dope semiconductor material. If the implanted atoms have a small radii they can induce stress to the implanted lattice. These three consequences of ion implantation, damage, doping and stress are used to modify the etch rate of oxide and polysilicon. High etching selectivity are reached, which allow the fabrication of a localized buried sacrificial or etch stop zone, called buried mask. The definition of the buried mask being done by ion implantation, it opens the possibility to fabricate a buried mask aligned with the implantation mask. Although some more work has to be invested to fabricate planar double gate MOS using buried mask in polysilicon, this concept of buried mask, which could also be called anisotropic wet and vapor etching, is foreseen as a very promising technique in MEMS micromachining and for bio sensor applications.
245

An assessment of dioxins, dibenzofurans and PCBs in the sediments of selected freshwater bodies and estuaries in South Africa / R. Pieters

Pieters, Rialet January 2007 (has links)
Thesis (Ph.D. (Zoology))--North-West University, Potchefstroom Campus, 2008.
246

Total positivity and oscillatory kernels : An overview, and applications to the spectral theory of the cubic string

Kardell, Marcus January 2010 (has links)
In the study of the Degasperis-Procesi dierential equation, an eigenvalue problem called the cubic string occurs. This is a third order generalization of the second order problem describing the eigenmodes of a vibrating string. In this thesis we study the eigenfunctions of the cubic string for discrete and continuous mass distributions, using the theory of total positivity, via a combinatorial approach with planar networks.
247

The Role of Farnesyltransferase β-subunit in Neuronal Polarity in Caenorhabditis Elegans

Carr, David, A. 07 February 2013 (has links)
Little is known about the molecular components and interactions of the planar cell polarity pathway that regulate neuronal polarity. This study uses a prkl-1 induced backwards locomotion defect as an array to perform a prkl-1 suppressor screen in C. elegans looking for new components of the planar cell polarity pathway involved in the neuronal polarization of VC4 and VC5. The screen discovered twelve new alleles of vang-1, one new allele of fntb-1 and five new mutations in unknown polarity genes. fntb-1 encodes for the worm ortholog of Farnesyltransferase β-subunit and is important for neuronal polarization. Acting cell and non-cell autonomously, fntb-1 regulates the function and localization of prkl-1 through the recognition of a CAAX motif. Therefore, fntb-1 modifies prkl-1 to regulate the neuronal polarity of VC4 and VC5.
248

Planar Lightwave Circuits Employing Coupled Waveguides in Aluminum Gallium Arsenide

Iyer, Rajiv 31 July 2008 (has links)
This dissertation addresses three research challenges in planar lightwave circuit (PLC) optical signal processing. 1. Dynamic localization, a relatively new class of quantum phenomena, has not been demonstrated in any system to date. To address this challenge, the quantum system was mapped to the optical domain using a set of curved, coupled PLC waveguides in aluminum gallium arsenide (AlGaAs). The devices demonstrated, for the first time, exact dynamic localization in any system. These experiments motivate further mappings of quantum phenomena in the optical domain, leading toward the design of novel optical signal processing devices using these quantum-analog effects. 2. The PLC microresonator promises to reduce PLC device size and increase optical signal processing functionality. Microresonators in a parallel cascaded configuration, called "side coupled integrated spaced sequence of resonators" (SCISSORs), could offer very interesting dispersion compensation abilities, if a sufficient number of rings is present to produce fully formed "Bragg" gaps. To date, a SCISSOR with only three rings has been reported in a high-index material system. In this work, one, two, four and eight-ring SCISSORs were fabricated in AlGaAs. The eight-ring SCISSOR succeeded in producing fully formed Bragg peaks, and offers a platform to study interesting linear and nonlinear phenomena such as dispersion compensators and gap solitons. 3. PLCs are ideal candidates to satisfy the projected performance requirements of future microchip interconnects. In addition to data routing, these PLCs must provide over 100-bit switchable delays operating at ~ 1 Tbit/s. To date, no low loss optical device has met these requirements. To address this challenge, an ultrafast, low loss, switchable optically controllable delay line was fabricated in AlGaAs, capable of delaying 126 bits, with a bit-period of 1.5 ps. This successful demonstrator offers a practical solution for the incorporation of optics with microelectronics systems. The three aforementioned projects all employ, in their unique way, the coupling of light between PLC waveguides in AlGaAs. This central theme is explored in this dissertation in both its two- and multi-waveguide embodiments.
249

Aerostructural Optimization of Non-planar Lifting Surfaces

Jansen, Peter Willi 14 July 2009 (has links)
Non-planar lifting surfaces offer potentially significant gains in aerodynamic efficiency by lowering induced drag. Non-aerodynamic considerations, such as structures can impact the overall efficiency. Here, a panel method and equivalent beam finite element model are used to explore non-planar configurations taking into account the coupling between aerodynamics and structures. A single discipline aerodynamic optimization and a multidisciplinary aerostructural optimization are investigated. Due to the complexity of the design space and the presence of multiple local minima, an augmented Lagrangian particle swarm optimizer is used. The aerodynamic optimum solution found for rectangular lifting surfaces is a box wing, while allowing for sweep and taper yields a joined wing. Adding parasitic drag in the aerodynamic model reduces the size of the non--planar elements. The aerostructural optimal solution found is a winglet configuration when the span is constrained and a wing rake when there is no such constraint.
250

Investigation of the Effects of Aging and Small Vessel Disease on Cardiac Frequency Signal in Cerebral White Matter as Imaged by Echo Planar Imaging using Magnetic Resonance

Makedonov, Ilia 21 March 2012 (has links)
Cerebral small vessel disease (SVD) is highly prevalent in older adults and is a predictor of stroke, dementia, and death. SVD is also associated with cognitive dysfunction, gait problems, and urinary incontinence. SVD is diagnosed based on white matter hyperintensities on T2 weighted scans. This thesis investigates the cardiac frequency component of resting state functional magnetic resonance imaging data in young healthy adults, older healthy adults, and older adults with pronounced SVD. A cardiac pulsatility metric is defined, and a tissue type contrast is observed between white matter, grey matter, and cerebrospinal fluid. Aging and disease effects are observed on cardiac pulsatility in white matter. The increased pulsatility may reflect the pathology of venous collagenosis and draining vein stenosis. Developing a better understanding of the etiology of SVD is an important step towards treating the disease.

Page generated in 0.0375 seconds