Spelling suggestions: "subject:"boussinesq"" "subject:"iboussinesq""
31 |
Controlabilidade de algumas EDPs não lineares, e, densidade e espectro de subvariedades mínimas em espaço forma. / Controllability of some nonlinear PDEs and density and spectrum of minimal submanifolds in space formsVieira, Franciane de Brito 24 May 2017 (has links)
VIEIRA, F. B. Controlabilidade de algumas EDPs não lineares, e, densidade e espectro de subvariedades mínimas em espaço forma. 2017. 89 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T13:15:27Z
No. of bitstreams: 1
2016_tese_fbvieira.pdf: 681898 bytes, checksum: d123b89ff8ddaa52a643807b847421b5 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Para o aluno. Alterar a data e incluir a conclusão, tanto no sumário como no final do texto. Conclusão é capítulo portanto numerado.
Rocilda on 2017-04-19T14:54:37Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T16:23:39Z
No. of bitstreams: 1
2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-04-24T11:15:25Z (GMT) No. of bitstreams: 1
2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5) / Made available in DSpace on 2017-04-24T11:15:25Z (GMT). No. of bitstreams: 1
2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5)
Previous issue date: 2017-05-24 / In the first part of this thesis we deal with the 3D Navier-Stokes and Boussinesq systems in a cube. We prove some results concerning the global approximate controllability by means of boundary controls which act in some part of the boundary. They are generalizations and variants of some previous results by Guerrero, Imanuvilov and Puel. Still in the first part of this Thesis, we prove the internal and boundary local null controllability of a 1D parabolic PDE with nonlinear diffusion. Here, the main tools are Liusternik’s inverse function Theorem and appropriate Carleman estimates. In the second part of this Thesis, we consider M
m minimal properly immersed submanifolds in a complete ambient space N n suitably close to a space form N
n k of curvature −k ≤ 0. We are interested in the relation between the density function Θ(r) of M m and the spectrum of the Laplace-Beltrami operator. In particular, we prove that if Θ(r) has subexponential growth (when k < 0) or sub-polynomial growth (k = 0) along a sequence, then the spectrum of M m is the same as that of the space form N m k . Notably, the result applies to Anderson’s (smooth) solutions of Plateau’s roblem at infinity on the hyperbolic space H n , independently of their boundary regularity. We also give a simple condition on the second fundamental form that ensures M to have finite density. In particular, we show that minimal submanifolds of H n with finite total curvature have finite density. / Na primeira parte desta tese tratamos dos sistemas 3D de Navier-Stokes e Boussinesq em um cubo. Nós provamos alguns resultados sobre a controlabilidade aproximada global por meio de controles de bordo que agem em uma parte da fronteira. Estes reultados são generalizações e variações de alguns resultados anteriores de Guerrero, Imanuvilov e Puel. Ainda na primeira parte da tese, nós provamos a controlabilidade nula local interna e de bordo de uma EDP parabólica 1D com difusão não linear. Aqui, as ferramentas principais são o teorema da função inversa de Liusternik e desigualdades de Carleman adequadas. Na segunda parte desta tese, consideramos M m subvariedades mínimas propriamente imersas em
um espaço ambiente completo N n adequadamente próximo a um espaço forma N n k de curvatura −k ≤ 0. Estamos interessados na relação entre a função densidade Θ(r) de M m e o espectro do operador Laplace-Beltrami. Em particular, provamos que se Θ(r) temum crescimento subexponencial (quando k < 0) ou bubpolinomial (k = 0) ao longo de uma sequência, então o espectro de M m é o mesmo do espaço forma N
m k . Notavelmente, o resultado se aplica a soluções Anderson (suaves) do problema de Plateau no infinito sobre o espaço hiperbólico H n , independentemente da regularidade dos seus bordos. Nós também fornecemos uma condição simples sobre a segunda forma fundamental que garante que M tem densidade finita. Em particular, mostramos que subvariedades mínimas de H n com curvatura total finita te densidade
finita.
|
32 |
Nouvelle approche pour l'obtention de modèles asymptotiques en océanographie / New method to obtain asymptotic models in oceanographyBellec, Stevan 05 October 2016 (has links)
Dans ce manuscrit, nous nous inéressons à l'étude du mouvement des vagues soumises uniquement à leur poids par le biais d'équations asymptotiques. Nous commençons par rappeler la dérivation des principaux modèles généralement utilisés (Boussinesq, Green-Naghdi,...). Nous introduisons également un nouveau modèle exprimé en amplitude-flux qui correspond à une variante des équations de Nwogu. Dans le second chapitre, nous démontrons un résultat d'existence en temps long pour ces nouvelles équations et nous étudions l'existence d'ondes solitaires pour les équations de Boussinesq. Ce travail permet notamment de calculer avec une grande précision ces solutions exactes. Le troisième chapitre détaille les différences non linéaires que l'on retrouve entre les différentes équations de Boussinesq (modèles en flux-amplitude comparés aux modèles en vitesse-amplitude). Enfin, les deux derniers chapitres introduisent un nouveau paradigme pour trouver des schémas numériques adaptés aux modèles asymptotiques. L'idée est d'appliquer une analyse asymptotique aux équations d'Euler discrétisées. Ce nouveau paradigme est appliqué aux équations de Peregrine, de Nwogu et de Green-Naghdi. Plusieurs cas tests sont proposés dans ces deux chapitres. / In this work, we are interested in the evolution of water waves under the gravity force using asymptotics models. We start by recalling the derivation of most used models (Boussinesq, Green-Naghdi,...) and we introduce a new model expressed amplitude-flux, which is an alternative version of the Nwogu equations. In the second chapter, we prove a long time existence result for the new model and we investigate the existence of solitary waves for the Boussinesq models. This work allow us to compute these solutions with a good precision. The third chapter highlights the nonlinear differences between the Boussinesq equations (amplitude-flux models versus amplitude-velocity models). Finally, the two last chapter introduce a new paradigm in order to find numerical schemes adapted to asymptotics models. The idea is to apply an asymptotic analysis to a discretized Euler system. This new paradigm is applied to Peregrine equations, Nwogu equations and Green-Naghdi equations. Test cases are presented in these two chapters
|
33 |
Diffusion turbulente anisotrope dans les zones radiatives d'étoilesToqué, Nathalie January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
34 |
Aerodynamische Wirkung schnell bewegter bodennaher Körper auf ruhende Objekte / Aerodynamic loads on resting objects induced by fast-moving near-ground bodiesRutschmann, Sabrina 09 May 2017 (has links)
No description available.
|
35 |
Data Assimilation in the Boussinesq Approximation for Mantle ConvectionMcQuarrie, Shane Alexander 01 July 2018 (has links)
Many highly developed physical models poorly approximate actual physical systems due to natural random noise. For example, convection in the earth's mantle—a fundamental process for understanding the geochemical makeup of the earth's crust and the geologic history of the earth—exhibits chaotic behavior, so it is difficult to model accurately. In addition, it is impossible to directly measure temperature and fluid viscosity in the mantle, and any indirect measurements are not guaranteed to be highly accurate. Over the last 50 years, mathematicians have developed a rigorous framework for reconciling noisy observations with reasonable physical models, a technique called data assimilation. We apply data assimilation to the problem of mantle convection with the infinite-Prandtl Boussinesq approximation to the Navier-Stokes equations as the model, providing rigorous conditions that guarantee synchronization between the observational system and the model. We validate these rigorous results through numerical simulations powered by a flexible new Python package, Dedalus. This methodology, including the simulation and post-processing code, may be generalized to many other systems. The numerical simulations show that the rigorous synchronization conditions are not sharp; that is, synchronization may occur even when the conditions are not met. These simulations also cast some light on the true relationships between the system parameters that are required in order to achieve synchronization. To conclude, we conduct experiments for two closely related data assimilation problems to further demonstrate the limitations of the rigorous results and to test the flexibility of data assimilation for mantle-like systems.
|
36 |
Modelação da rebentação da agitação marítimaLima, Vânia Cristina Veloso de Azevedo January 2006 (has links)
Tese de mestrado. Fundamentos e Aplicações da Mecânica dos Fluídos. 2006. Faculdade de Engenharia. Universidade do Porto
|
37 |
A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flowsZerihun, Yebegaeshet Tsegaye Unknown Date (has links)
The depth-averaged Saint-Venant equations, which are used for most computational flow models, are adequate in simulating open channel flows with insignificant curvatures of streamlines. However, these equations are insufficient when applied to flow problems where the effects of non-hydrostatic pressure distribution are predominant. This study provides a comprehensive examination of the feasibility of a simple one-dimensional Boussinesq-type model equation for such types of flow problems. This equation, which allows for curvature of the free surface and a non-hydrostatic pressure distribution, is derived using the momentum principle together with the assumption of a constant centrifugal term at a vertical section. Besides, two Boussinesq-type model equations that incorporate different degrees of corrections for the effects of the curvature of the streamline are investigated in this work. One model, the weakly curved flow equation model, is the simplified version of the flow model based on a constant centrifugal term for flow situations that involve weak streamline curvature and slope, and the other, the Boussinesq-type momentum equation linear model is developed based on the assumption of a linear variation of centrifugal term with depth.
|
38 |
A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flowsZerihun, Yebegaeshet Tsegaye Unknown Date (has links)
The depth-averaged Saint-Venant equations, which are used for most computational flow models, are adequate in simulating open channel flows with insignificant curvatures of streamlines. However, these equations are insufficient when applied to flow problems where the effects of non-hydrostatic pressure distribution are predominant. This study provides a comprehensive examination of the feasibility of a simple one-dimensional Boussinesq-type model equation for such types of flow problems. This equation, which allows for curvature of the free surface and a non-hydrostatic pressure distribution, is derived using the momentum principle together with the assumption of a constant centrifugal term at a vertical section. Besides, two Boussinesq-type model equations that incorporate different degrees of corrections for the effects of the curvature of the streamline are investigated in this work. One model, the weakly curved flow equation model, is the simplified version of the flow model based on a constant centrifugal term for flow situations that involve weak streamline curvature and slope, and the other, the Boussinesq-type momentum equation linear model is developed based on the assumption of a linear variation of centrifugal term with depth.
|
39 |
Dynamique des plages sableuses soumises à l'action des vagues, de la marée et des rechargements artificielsMorellato, David 18 December 2008 (has links) (PDF)
La thèse s'attache à l'étude des processus hydrodynamiques et hydro-sédimentaires ``cross-shore'' affectant la morphodynamique des plages sableuses dissipatives soumises à l'action des vagues, de la marée et des rechargements artificiels. La méthode choisie, qui s'appuie sur la modélisation numérique déterministe, couple le modèle de propagation de vagues FUNWAVE basé sur les équations complètement non linéaires de Wei et al. avec deux modèles de transport sédimentaire et un module d'évolution morphologique. Le premier modèle de transport, 1DH, intègre la vitesse près du fond corrigée par Lynett et la formule de transport sédimentaire total de Bailard. Le second modèle, pseudo-2DV, est une juxtaposition de modèles 1DV de turbulence exprimée en coordonnée sigma. Ce double outil est validé par des mesures de laboratoire (principalement dans le canal Delta Flume du Delft Hydraulics aux Pays-Bas) et in situ sur la plage de Pentrez en baie de Douarnenez (Finistère). Il reproduit bien la propagation des vagues, la distribution verticale des vitesses et des concentrations de sédiments en suspension, et de manière satisfaisante en dépit d'un lissage excessif l'évolution morphologique comme le mouvement des barres. La version 1DH, plus stable et moins coûteuse en temps calcul que la version pseudo-2DV, a été appliquée pour quantifier l'influence des différents paramètres sur la morphodynamique de plages planes soumises à l'action conjuguée des vagues et de la marée. Les résultats des simulations sont conformes au modèle descriptif de Masselink et Short. Finalement, ce modèle 1DH a été mis en oeuvre pour explorer l'évolution de rechargements artificiels et esquisser quelques recommandations préliminaires sur leur pratique.
|
40 |
Convection in a differentially heated rotating spherical shell of Boussinesq fluid with radiative forcingBabalola, David 01 December 2012 (has links)
In this study we investigate the
flow of a Boussinesq
fluid contained in a rotating, differentially heated spherical shell. Previous work, on the spherical shell of Boussinesq fluid, differentially heated the shell by prescribing temperature on the inner boundary
of the shell, setting the temperature deviation from the reference temperature to vary
proportionally with -cos 20, from the equator to the pole. We change the model to
include an energy balance equation at the earth's surface, which incorporates latitudinal solar radiation distribution and ice-albedo feedback mechanism with moving ice
boundary. For the
fluid velocity, on the inner boundary, two conditions are considered:
stress-free and no-slip. However, the model under consideration contains only simple
representations of a small number of climate variables and thus is not a climate model
per se but rather a tool to aid in understanding how changes in these variables may
affect our planet's climate.
The solution of the model is followed as the differential heating is changed, using the pseudo arc-length continuation method, which is a reliable method that can
successfully follow a solution curve even at a turning point.
Our main result is in regards to hysteresis phenomenon that is associated with
transition from one to multiple convective cells, in a dfferentially heated, co-rotating
spherical shell. In particular, we find that hysteresis can be observed without transition
from one to multiple convective cells. Another important observation is that the
transition to multiple convective cells is significantly suppressed altogether, in the
case of stress-free boundary conditions on the fluid velocity. Also, the results of this
study will be related to our present-day climate. / UOIT
|
Page generated in 0.0534 seconds