Spelling suggestions: "subject:"cistema dde boussinesq"" "subject:"cistema dde iboussinesq""
1 |
Lp-theory for the boussinesq SystemAcevedo Tapia, Paul Andrés January 2015 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / Esta tesis está dedicada al estudio del sistema de Boussinesq estacionario:
\begin{subequations}\label{sum_sp:eqn_Boussinesq}
\begin{equation}
-\nu \Delta\vu +(\vu\cdot\nabla)\vu+\nabla \pi=\theta\vg \text{\quad en $\Omega$,}\qquad
\div\;\vu=0 \text{\quad en $\Omega$,}
\end{equation}
\begin{equation}
-\kappa \Delta\theta +\vu\cdot\nabla\theta=h \text{\quad en $\Omega$,}
\end{equation}
\end{subequations}
donde $\Omega\subset\R{3}$ es un conjunto abierto, acotado y conexo; $\vu$, $\pi$ y $\theta$ representan el campo de velocidades, la presión y la temperatura del fluido, respectivamente, siendo éstas las incógnitas del sistema; $\nu>0$ es la viscosidad cinemática del fluido, $\kappa>0$ es la difusividad térmica del fluido, $\vg$ es la aceleración de la gravedad y $h$ es una fuente de calor aplicada al fluido.
El objetivo de esta tesis es el estudio de la teoría $L^p$ para el sistema de Boussinesq estacionario considerando dos diferentes tipos de condiciones de frontera del campo de velocidades. En efecto, en una primera etapa, se considerará la condición de frontera de Dirichlet no homogéneo
\begin{equation}\label{sum_sp:cond_Dirichlet_velocity}
\vu=\vub\text{\quad sobre\quad}\Gamma,
\end{equation}
donde $\Gamma$ denota la frontera del dominio; mientras que en una segunda etapa, el campo de velocidades tendrá prescrito la condición de frontera de Navier no homogéneo
\begin{equation}\label{sum_sp:cond_Navier_velocity}
\vu\cdot\vn=0,\quad 2\left[\DT(\vu)\vn\right]_{\vt}+\alpha\;\vu_{\vt}=\bm{a},\text{\quad sobre\quad}\Gamma,
\end{equation}
donde $\DT(\vu)=\frac{1}{2}\left(\nabla\vu+(\nabla\vu)^T\right)$ es el tensor de deformación asociado con el campo de velocidades $\vu$, $\vn$ es el vector normal unitario exterior, $\vt$ es el correspondiente vector unitario tangente, $\alpha$ y $\vNb$ son una función de fricción y un campo vectorial tangencial definidas ambas sobre la frontera. Además, la condición de frontera para la temperatura será, en las dos primeras partes, la condición de frontera de Dirichlet no homogéneo
\begin{equation}\label{sum_sp:cond_Dirichlet_temperature}
\theta=\thb\text{\quad sobre\quad}\Gamma.
\end{equation}
Así, en primer lugar, estudiamos la existencia y unicidad de la solución débil para el problema \eqref{sum_sp:eqn_Boussinesq}, \eqref{sum_sp:cond_Dirichlet_velocity} y \eqref{sum_sp:cond_Dirichlet_temperature} en el caso hilbertiano. Además, la existencia de soluciones generalizadas para $p\geq\frac{3}{2}$ y soluciones fuertes para $1<p<\infty$ es probada. También, se estudiará la existencia y unicidad de la solución muy débil. Vale la pena señalar que debido a que la condición de Dirichlet no homogénea es considerada para la velocidad, el hecho de que la frontera del dominio pueda ser no conexa juega un papel importante, ya que aparece de manera explícita en las hipótesis de algunos de los principales resultados.
Por otro lado, en la segunda etapa de la tesis, se estudiará la existencia de soluciones débiles en el caso de Hilbert, así como la existencia de soluciones generalizadas para $p>2$ y soluciones fuertes para $p\geq\frac{6}{5}$ para el problema \eqref{sum_sp:eqn_Boussinesq}, \eqref{sum_sp:cond_Navier_velocity} y \eqref{sum_sp:cond_Dirichlet_temperature}. Tenga en cuenta que la suposición hecha anteriormente acerca de la no conexidad de la frontera no aparecerá aquí debido a la restricción de impermeabilidad en la frontera.
Finalmente, en la última parte de esta tesis, estudiamos la teoría $L^p$ para las ecuaciones de Stokes con la condición de Navier \eqref{sum_sp:cond_Navier_velocity}. Más precisamente, nos ocuparemos de la regularidad $W^{1,p}$ para $p\geq2$ y la regularidad $W^{2,p}$ para $p\geq\frac{6}{5}$.
|
2 |
Controlabilidade exata local para as trajetórias de um sistema não-linear acoplado.Souza, Diego Araujo de 30 September 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:03Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 876230 bytes, checksum: 3a204615891ef1a7232794e0c75afdc8 (MD5)
Previous issue date: 2010-09-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation is devoted to prove the local exact controllability to the trajectories
for a coupled system, of the Boussinesq kind. In the state system, the
unknowns are the velocity field and pressure of the
uid (y; p), the temperature (-)
and an additional variable c that can be viewed as the concentration of a contaminant
solute. We prove several results, that essentially show that it is sufficient to act
locally in space on the equations satisfied by (-) and c. The controllability property
of this system will be obtained by means of a Carleman inequality for apropriate
system and of a inverse function theorem. / Esta dissertação é dedicada a provar a controlabilidade exata local ás trajetórias
para um sistema acoplado do tipo Boussinesq. No sistema estado, as variáveis desconhecidas
são o campo velocidade e pressão do fluido (y; p), a temperatura - e uma
variável adicional c que pode ser vista como uma concentração de um soluto contaminante.
A propriedade de controlabilidade nula desse sistema será obtida por meio
de uma desigualdade de Carleman para um sistema apropriado e de um teorema de
função inversa.
|
3 |
Existência e comportamento assintótico de soluções em espaços de Morrey para as equações de Boussinesq no Rn e de Navier-Stokes no semi-plano Rn+Fernandes de Almeida, Marcelo 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:31:35Z (GMT). No. of bitstreams: 2
arquivo950_1.pdf: 1082241 bytes, checksum: 372078eb11d1777102148afdc22036de (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2011 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta tese, estudamos dois modelos de mecânica dos fluidos em espaços de Morrey, os
quais contêm funções fortemente singulares. O primeiro modelo é o sistema de Boussinesq
(SB) em Rn, e o segundo, as equações de Navier-Stokes (ENS) no semi-espaço Rn
+: Provamos
novos resultados de existência global de soluções, de simetria auto-similar, de regularidade e
de comportamento assintótico das soluções. Nossos resultados nos permitem considerar novas
condições iniciais e campos gravitacionais singulares
|
4 |
Controlabilidade de algumas EDPs não lineares, e, densidade e espectro de subvariedades mínimas em espaço forma. / Controllability of some nonlinear PDEs and density and spectrum of minimal submanifolds in space formsVieira, Franciane de Brito 24 May 2017 (has links)
VIEIRA, F. B. Controlabilidade de algumas EDPs não lineares, e, densidade e espectro de subvariedades mínimas em espaço forma. 2017. 89 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T13:15:27Z
No. of bitstreams: 1
2016_tese_fbvieira.pdf: 681898 bytes, checksum: d123b89ff8ddaa52a643807b847421b5 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Para o aluno. Alterar a data e incluir a conclusão, tanto no sumário como no final do texto. Conclusão é capítulo portanto numerado.
Rocilda on 2017-04-19T14:54:37Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T16:23:39Z
No. of bitstreams: 1
2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-04-24T11:15:25Z (GMT) No. of bitstreams: 1
2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5) / Made available in DSpace on 2017-04-24T11:15:25Z (GMT). No. of bitstreams: 1
2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5)
Previous issue date: 2017-05-24 / In the first part of this thesis we deal with the 3D Navier-Stokes and Boussinesq systems in a cube. We prove some results concerning the global approximate controllability by means of boundary controls which act in some part of the boundary. They are generalizations and variants of some previous results by Guerrero, Imanuvilov and Puel. Still in the first part of this Thesis, we prove the internal and boundary local null controllability of a 1D parabolic PDE with nonlinear diffusion. Here, the main tools are Liusternik’s inverse function Theorem and appropriate Carleman estimates. In the second part of this Thesis, we consider M
m minimal properly immersed submanifolds in a complete ambient space N n suitably close to a space form N
n k of curvature −k ≤ 0. We are interested in the relation between the density function Θ(r) of M m and the spectrum of the Laplace-Beltrami operator. In particular, we prove that if Θ(r) has subexponential growth (when k < 0) or sub-polynomial growth (k = 0) along a sequence, then the spectrum of M m is the same as that of the space form N m k . Notably, the result applies to Anderson’s (smooth) solutions of Plateau’s roblem at infinity on the hyperbolic space H n , independently of their boundary regularity. We also give a simple condition on the second fundamental form that ensures M to have finite density. In particular, we show that minimal submanifolds of H n with finite total curvature have finite density. / Na primeira parte desta tese tratamos dos sistemas 3D de Navier-Stokes e Boussinesq em um cubo. Nós provamos alguns resultados sobre a controlabilidade aproximada global por meio de controles de bordo que agem em uma parte da fronteira. Estes reultados são generalizações e variações de alguns resultados anteriores de Guerrero, Imanuvilov e Puel. Ainda na primeira parte da tese, nós provamos a controlabilidade nula local interna e de bordo de uma EDP parabólica 1D com difusão não linear. Aqui, as ferramentas principais são o teorema da função inversa de Liusternik e desigualdades de Carleman adequadas. Na segunda parte desta tese, consideramos M m subvariedades mínimas propriamente imersas em
um espaço ambiente completo N n adequadamente próximo a um espaço forma N n k de curvatura −k ≤ 0. Estamos interessados na relação entre a função densidade Θ(r) de M m e o espectro do operador Laplace-Beltrami. Em particular, provamos que se Θ(r) temum crescimento subexponencial (quando k < 0) ou bubpolinomial (k = 0) ao longo de uma sequência, então o espectro de M m é o mesmo do espaço forma N
m k . Notavelmente, o resultado se aplica a soluções Anderson (suaves) do problema de Plateau no infinito sobre o espaço hiperbólico H n , independentemente da regularidade dos seus bordos. Nós também fornecemos uma condição simples sobre a segunda forma fundamental que garante que M tem densidade finita. Em particular, mostramos que subvariedades mínimas de H n com curvatura total finita te densidade
finita.
|
5 |
Controlabilidade para alguns modelos da mecânica dos fluidosSouza, Diego Araújo de 20 March 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-28T14:37:42Z
No. of bitstreams: 1
arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5) / Made available in DSpace on 2016-03-28T14:37:42Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5)
Previous issue date: 2014-03-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The aim of this thesis is to present some controllability results for some fluid
mechanic models. More precisely, we will prove the existence of controls that steer the
solution of our system from a prescribed initial state to a desired final state at a given
positive time. The two first Chapters deal with the controllability of the Burgers-α
and Leray-α models. The Leray-α model is a regularized variant of the Navier-Stokes
system (α is a small positive parameter), that can also be viewed as a model for
turbulent flows; the Burgers-α model can be viewed as a related toy model of Leray-α.
We prove that the Leray-α and Burgers-α models are locally null controllable, with
controls uniformly bounded in α. We also prove that, if the initial data are sufficiently
small, the pair state-control (that steers the solution to zero) for the Leray-α system
(resp. the Burgers-α system) converges as α → 0+ to a pair state-control(that steers
the solution to zero) for the Navier-Stokes equations (resp. the Burgers equation). The
third Chapter is devoted to the boundary controllability of inviscid incompressible fluids
for which thermal effects are important. They will be modeled through the so called
Boussinesq approximation. In the zero heat diffusion case, by adapting and extending
some ideas from J.-M. Coron [14] and O. Glass [45], we establish the simultaneous
global exact controllability of the velocity field and the temperature for 2D and 3D
flows. When the heat diffusion coefficient is positive, we present some additional results
concerning exact controllability for the velocity field and local null controllability of
the temperature. In the last Chapter, we prove the local exact controllability to the
trajectories for a coupled system of the Boussinesq kind, with a reduced number of
controls. In the state system, the unknowns are: the velocity field and pressure of the
fluid (y, p), the temperature θ and an additional variable c that can be viewed as the
concentration of a contaminant solute. We prove several results, that essentially show
that it is sufficient to act locally in space on the equations satisfied by θ and c. / O objetivo desta tese é apresentar alguns resultados controlabilidade para alguns
modelos da mecânica dos fluidos. Mais precisamente, provaremos a existência
de controles que conduzem a solução do nosso sistema de um estado inicial prescrito
à um estado final desejado em um tempo positivo dado. Os dois primeiros Capítulos
preocupam-se com a controlabilidade dos modelos de Burgers-α e Leray-α. O modelo
de Leray-α é uma variante regularizada do sistema de Navier-Stokes (α é umparâmetro
positivo pequeno), que pode também ser visto como um modelo de fluxos turbulentos;
já o modelo Burgers-α pode ser visto como um modelo simplificado de Leray-α.
Provamos que os modelos de Leray-α e Burgers-α são localmente controláveis a zero,
com controles limitados uniformemente em α. Também provamos que, se os dados
iniciais são suficientemente pequenos, o par estado-controle (que conduz a solução a
zero) para o sistema de Leray-α (resp. para o sistema de Burgers-α) converge quando
α → 0+ a um par estado-controle (que conduz a solução a zero) para as equações de
Navier-Stokes (resp. para a equação de Burgers). O terceiro Capítulo é dedicado à
controlabilidade de fluidos incompressíveis invíscidos nos quais os efeitos térmicos são
importantes. Estes fluidos são modelados através da então chamada Aproximação de
Boussinesq. No caso emque não há difusão de calor, adaptando e estendendo algumas
idéias de J.-M. Coron [14] e O. Glass [45], estabelecemos a controlabilidade exata global
simultaneamente do campo velocidade e da temperatura para fluxos em 2D e 3D.
Quando o coeficiente de difusão do calor é positivo, apresentamos alguns resultados
sobre a controlabilidade exata global para o campo velocidade e controlabilidade nula
local para a temperatura. No último Capítulo, provamos a controlabilidade exata local
à trajetórias de um sistema acoplado do tipo Boussinesq, com um número reduzido de
controles. Nesse sistema, as incógnitas são: o campo velocidade e a pressão do fluido
(y, p), a temperatura θ e uma variável adicional c que pode ser vista como a concentração
de um soluto contaminante. Provamos vários resultados, que essencialmente
mostram que é suficiente atuar localmente no espaço sobre as equações satisfeitas por
θ e c.
|
6 |
Controlabilidade exata de sistemas parabólicos, hiperbólicos e dispersivosSantos, Maurício Cardoso 25 July 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:19Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2353317 bytes, checksum: d71ead9d4e0f785df35982fc9318c7da (MD5)
Previous issue date: 2014-07-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this thesis, we study controllability results of some phenomena modeled by Partial
Differential Equations (PDEs):
Multi objective control problem, for parabolic equations, following the Stackelber-Nash
strategy is considered: for each leader control which impose the null controllability for
the state variable, we find a Nash equilibrium associated to some costs. The leader
control is chosen to be the one of minimal cost.
Null controllability for the linear Schrödinger equation: with a convenient space-time
discretization, we numerically construct boundary controls which lead the solution of
the Schrödinger equation to zero; using some arguments of Fursikov-Imanuvilov (see
[Lecture Notes Series, Vol 34, 1996]) we construct controls with exponential decay at
final time.
Null controllability for a Schrödinger-KdV system: in this work, we combine global
Carleman estimates with energy estimates to obtain an observability inequality. The
controllability result holds by the Hilbert Uniqueness Method (HUM).
Controllability results for a Euler type system, incompressible, inviscid, under the influence
of a temperature are obtained: we mainly use the extension and return methods / Nesta tese, estudaremos resultados de controle para alguns problemas da teoria das equações
diferenciais parciais (EDPs):
Problema de controle multi objetivo para um problema parabólico, seguindo estratégias
do tipo Stackelberg-Nash: para cada controle líder, que impõe a controlabilidade nula
para o estado, encontramos seguidores, em equilíbrio de Nash, associados a funcionais
custo. Em seguida, determinamos o líder de menor custo. Controlabilidade nula para a equação de Schrödinger linear: com uma discretização
espaço-tempo adequada, construímos numericamente controles-fronteira que conduzem
a solução de Schrödinger a zero; utilizando técnicas de Fursikov-Imanuvilov (veja [Lecture
Notes Series, Vol 34, 1996]) contruímos controles que decaem exponencialmente no
tempo final.
Controlabilidade nula para um sistema acoplado Schrödinger-KdV: neste trabalho, combinando
estimativas globais de Carleman com estimativas de energia, obtemos uma desigualdade
de observabilidade. O resultado de controlabilidade segue pelo método de
unicicade Hilbert (HUM).
Controlabilidade para um sistema do tipo Euler, incompressível, invíscido, sob influência
de uma temperatura: Utilizamos os métodos de extensão seguido do método do retorno
para provar resultados de controlabilidade para este sistema
|
Page generated in 0.0541 seconds