• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 85
  • 41
  • 26
  • 25
  • 18
  • 16
  • 14
  • 7
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 653
  • 168
  • 132
  • 116
  • 111
  • 59
  • 57
  • 52
  • 49
  • 46
  • 39
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

RISK-TARGETED GROUND MOTION FOR PERFORMANCE- BASED BRIDGE DESIGN

Rana, Suman 01 May 2017 (has links)
The seismic design maps on ASCE 7-05, International Building Code- 2006/2009, assumed uniform hazard ground motion with 2% probability of exceedance in 50 years for the entire conterminous U.S. But, Luco et al in 2007 pointed out that as uncertainties in collapse capacity exists in structures, an adjustment on uniform hazard ground motion was proposed to develop new seismic design maps. Thus, risk-targeted ground motion with 1% probability collapse in 50 years is adopted on ASCE 7-10. Even though these seismic design maps are developed for buildings, performance-based bridge design is done using same maps. Because significance difference lies on design procedure of buildings and bridges this thesis suggests some adjustment should be made on uncertainty in the collapse capacity(β) when using for bridge design. This research is done in 3 cities of U.S— San Francisco, New Madrid and New York. Hazard curve is drawn using 2008 version of USGS hazard maps and risk- targeted ground motion is calculated using equation given by Luco et al adjusting the uncertainty in collapse capacity(β) to be 0.9 for bridge design instead of 0.8 as used for buildings. The result is compared with existing result from ASCE 7-10, which uses β=0.6. The sample design response spectrum for site classes A, B, C and D is computed for all 3 cities using equations given in ASCE 7-10 for all β. The design response spectrum curves are analyzed to concluded that adjustment on uncertainty in collapse capacity should be done on ASCE 7-10 seismic design maps to be used for performance-based bridge design.
192

Candidatos a leishmanicidas, antichagásicos e tuberculostáticos: estudo da síntese de fármacos dirigidos de hidroximetilnitrofural com manana para liberação específica em macrófagos / Leishmanicidal, antichagasic and tuberculostatic candidates: synthesis study of hydroxymethylnitrofurazone drug targeted with mannan for macrophages.

Marina Candido Primi 26 August 2013 (has links)
As doenças negligenciadas infectam mais de um bilhão de pessoas no mundo, no entanto, uma fração ínfima dos fármacos registrados nos últimos anos é direcionada a essas patologias. Entre as doenças negligenciadas consideradas prioridade, encontram-se doença de Chagas e leishmaniose. A tuberculose, que recentemente não é mais classificada como negligenciada pela Organização Mundial da Saúde, também está entre as prioridades do Ministério da Saúde no Brasil. O arsenal terapêutico disponível para o tratamento destas enfermidades compreende fármacos com toxicidade elevada e resistência crescente, entre outros inconvenientes. Dessa forma, verifica-se a importância no desenvolvimento de novos fármacos para as referidas doenças. Para este fim, o presente trabalho objetivou a síntese de um fármaco dirigido de hidroximetilnitrofural (NFOH) com manana para a liberação específica em macrófagos. O processo de latenciação foi utilizado para a consecução desse objetivo por meio da estratégia de fármacos dirigidos, buscando elevar seletividade e potência do NFOH. Este composto protótipo possui ação potencial tripanomicida, leishmanicida e tuberculostática. O transportador utilizado foi a manana, polímero de manose, que direciona a liberação da molécula ativa em receptores de manose observados na superfície de macrófagos. Em razão da presença de Trypanosoma cruzi, Leishmania sp. e Mycobacterium tuberculosis no interior de macrófagos em parte de seu ciclo biológico, o referido receptor é considerado um alvo adequado à liberação específica. Na tentativa de obter o referido fármaco dirigido, diversas metodologias sintéticas foram desenvolvidas. Também, realizaram-se estudos de modelagem molecular a fim de se obter informações sobre a liberação do fármaco dirigido proposto. Face à dificuldade de obtenção do derivado de NFOH, adicionalmente, realizou-se metodologias sintéticas a fim de se sintetizar um fármaco dirigido de metronidazol, fármaco que possui atividade antichagásica conhecida. Realizaram-se, também, estudos de modelagem molecular relacionados à sua liberação. / Neglected diseases infect more than one billion people worldwide. However, a small fraction of the drugs registered in recent years is addressed to these pathologies. Leishmaniasis and Chagas\' disease are among the neglected diseases considered priority. Tuberculosis, which is no longer classified as a neglected disease by the World Health Organization, is also among the priorities of the Ministry of Health in Brazil. The therapeutic arsenal available for the treatment of those diseases comprehends drugs with high toxicity and increasing resistance, among other inconveniences. Thus, it is important the development of new drugs for those diseases. For this purpose, this study aimed at synthesizing hydroxymethylnitrofurazone (NFOH) drug targeted with mannan for the specific release in the macrophages. Prodrug design was used to achieve this goal by means of targeted drugs strategy towards increasing NFOH selectivity and potency. This lead compound has potential trypanocidal, leishmanicidal and tuberculostatic activity. The directing group used was a mannose polymer, mannan, which directs the release of the active compound to mannose receptors (MR) on macrophages surface. Due to the presence of Trypanosoma cruzi, Leishmania sp. and Mycobacterium tuberculosis inside macrophages during part of their life cycle, MR are considered a suitable target for specific release. In an attempt to obtain the proposed compound, several synthetic methods have been developed. Also, molecular modeling studies were carried out to obtain information about the targeted drug release. Due to the difficulty of obtaining NFOH derivative, the synthesis of metronidazole targeted drug was tried. Also molecular modeling studies to predict metronidazole release from mannan derivative were performed.
193

Avaliação do potencial de superação da quimioresistência do melanoma aos inibidores de BRAFV600E (Vemurafenibe) e de MEK (Trametinibe) utilizando terapia combinatória com 4-nerolidilcatecol (4-NC) / Evaluation of the potential of overcoming the chemoresistance of melanoma to BRAFV600E (Vemurafenib) and MEK (Trametinib) inhibitors using combinatory therapy with 4-nerolidylcatechol (4-NC)

Débora Kristina Alves Fernandes 21 June 2018 (has links)
Embora o melanoma represente apenas 4% das neoplasias malignas da pele, é considerado a mais grave por ser altamente etal. Em virtude da via MAPK (Mitogen activated protein kinase) estar intimamente ligada ao descontrole da proliferação celular, especialmente em melanoma, esta via se tornou um alvo para o desenvolvimento de terapias direcionadas a oncogenes, como os potentes quimioterápicos Vemurafenibe (inibidor da mutação V600E em BRAF - BRAFV600E) e Trametinibe (inibidor de MEK). Cada vez mais, melhores taxas de respostas vêm sendo alcançadas com os novos medicamentos, porém a maioria dos pacientes está sujeita a recidivas após 7 meses de tratamento devido ao desenvolvimento de quimioresistência, justificando a constante busca por novos compostos terapêuticos. Dados de nosso laboratório indicam que 4-nerolidilcatecol (4-NC) induz aumento na expressão de p53, produção de ROS e dano ao DNA, culminando em apoptose dependente de caspase-3 em células de melanoma por ser um inibidor proteassomal. Além disto, o 4-nerolidilcatecol (4- NC) demonstrou efeito inibitório na proliferação de células de melanoma em modelo de cultura organotípica de pele. Desta forma, este projeto visa avaliar a possibilidade de superação da quimioresistência aos inibidores de BRAF e de MEK, utilizando terapias combinatórias com 4-NC em células de melanoma humano resistentes a estes inibidores. Primeiramente, linhagens celulares de melanoma resistentes aos inibidores de BRAF (R) e BRAF/MEK (DR) foram geradas a partir de células parentais BRAF mutadas (P) e caracterizadas por MTT, microscopia de fluorescência e western blotting. Estas células foram submetidas ao tratamento com 4-NC que apresentou citotoxicidade na concentração de 30µM, inibição de formação de colônias e diminuição na invasão em modelos in vitro de culturas 2D e 3D em todas as linhagens estudadas (P, R e DR). O 4-NC foi ainda capaz de induzir estresse de retículo endoplasmático com indução de apoptose. Visando a explorar o efeito terapêutico in vivo do 4-NC, outro estudo foi conduzido em animais submetidos a enxerto xenográfico com células parentais de melanoma NRAS mutadas. Após desenvolvimento do tumor, os animais foram tratados 3 vezes por semana durante 3 semanas com 4-NC (10 mg/kg) por via i.p. O 4-NC foi capaz de inibir em até 4 vezes o crescimento dos tumores xenográficos (4/10) quando comparado com os controles, com remissão completa do tumor em um animal. A expressão de p53 e PARP clivada foi aumentada nos tumores dos animais tratados, sugerindo apoptose. A expressão gênica de MMP2 e MMP14 estava diminuída nas mesmas amostras, demonstrando o papel do 4-NC na inibição da invasão do melanoma in vivo. Finalmente, a toxicidade sistêmica do 4-NC foi avaliada nas mesmas doses empregadas no ensaio in vivo de tumorigênese. A baixa toxicidade observada nos ensaios toxicológicos com tratamentos sub-crônicos com 4-NC e a citotoxicidade demonstrada em modelos xenográficos nos leva a considerar este composto como promissor para estudos futuros e sua aplicação no tratamento do melanoma cutâneo humano, incluindo pacientes resistentes aos inibidores de BRAF e MEK. / Melanoma accounts for only 4% of malignant neoplasms of the skin, but is considered the most serious because it is highly deadly. Because the MAPK (Mitogen activated protein kinase) pathway is closely linked to the lack of control of cell proliferation, especially in melanoma, this pathway has become a target for the development of oncogene-targeted therapies, such as the potent chemotherapeutic agents Vemurafenib (V600E mutation inhibitor in BRAF - BRAFV600E) and Trametinib (MEK inhibitor). Increasingly, better response rates have been achieved with the new drugs, but most patients are subject to relapses after 7 months of treatment due to several mechanisms, which justify the constant search for new therapeutic compounds. Data from our laboratory indicate that 4-nerolidylcatechol (4-NC) induces increased p53 expression, ROS production and DNA damage, culminating in caspase-3 dependent apoptosis in melanoma cells. The 4-NC compound demonstrated an inhibitory effect on melanoma cell proliferation in an organotypic skin culture model. Thus, this project aims to evaluate the possibility of overcoming the existing chemoresistance to BRAF and MEK inhibitors, using 4-NC combinatory therapies in human melanoma cells resistant to these inhibitors. Firstly, melanoma cell lines resistant to BRAF (R) and BRAF / MEK (DR) inhibitors were generated from naive cells mutated BRAF (N) and characterized by MTT, fluorescence microscopy and western blotting. These cells were submitted to 4-NC treatment that showed cytotoxicity with 30 µM, inhibition of colony formation and decrease in invasion in 2D and 3D in vitro models in all cell line studied (N, R and DR). Furthermore, 4-NC was able to induce endoplasmic reticulum stress with apoptosis induction. In order to explore the in vivo therapeutic effect of 4-NC, an additional study was conducted using xenograft model with NRAS-mutated melanoma cell line. After tumor development, the animals were treated 3 times per week for 3 weeks with 4-NC (10 mg / kg) by i.p. injection. 4-NC was able to inhibit up to 4- fold the growth of xenograft tumors (4/10) when compared to controls, with complete tumor remission in one animal. Cleaved PARP and p53 expression were increased in the tumors of treated animals, suggesting apoptosis. MMP2 and MMP14 gene expression were decreased in the same samples, demonstrating the role of 4-NC in inhibiting melanoma invasion in vivo. Finally, the systemic toxicity of 4-NC was evaluated at the same doses employed in the in vivo tumorigenesis assay. The low toxicity observed in the toxicological assays with sub-chronic 4- NC treatments and the demonstrated cytotoxicity in xenograft models leads us to consider this compound as promising for future studies and its application in the treatment of cutaneous human melanoma, including patients resistants to BRAF and MEK inhibitors.
194

Molecular targeting for tumor radiosensitization: implications of apoptosis and autophagy signaling in combined anticancer therapy

Moretti, Luigi 19 November 2015 (has links)
The central hypothesis supporting the present work is that the effectiveness of radiation therapy for cancer is often limited due to defects in key apoptosis regulators, such as Bcl-2 family members, that contribute to cancer ability to evade apoptosis. One way to bypass this resistance to radiotherapy is to target cell death pathways, aiming to sensitize tumours to radiation and enhance the therapeutic ratio in cancer. To test this central hypothesis, we took a dual approach: one targeted apoptosis and the other targeted autophagy. / First, we focused on the apoptotic signaling. The Bcl-2 family comprises antiapoptotic members, such as Bcl-2, Mcl-1, and Bcl-XL, and proapoptotic members, such as Bax, Bak, and Bid. The Bcl-2 family controls the integrity of the outer mitochondrial membrane and is critical in determining the susceptibility of cells to apoptosis induced by the intrinsic pathway. The balance between cell survival and cell death is modulated by the ratios and interactions of antiapoptotic and proapoptotic Bcl-2 family proteins. Overexpression of Bcl-2 or Bcl-XL is observed in several cancers, including lung, colorectal, prostate, and breast cancers, and has been shown to confer resistance to various anticancer agents, including radiotherapy. In cancer cells, alterations in the amounts of these antiapoptotic Bcl-2 proteins promote cell survival, among others by contributing to their evasion from treatment-induced apoptosis. We made the observation that lung cancer cells have different radiosensitivity. On the basis of their relative response to radiotherapy, we stratified lung cancer cells into two groups (higher or lower sensitivity), and selected a representative cell line of each group for more in-depth study: A549 (resistant) and HCC2429 (sensitive). We found that the expression levels of Bcl-XL expression, which is antiapoptotic, was dramatically higher in A549, whereas almost not detected in HCC2429. We then hypothesized that AT-101, a pan-Bcl-2 inhibitor, had the potential to radiosensitize lung cancer by restoring radiation-induced apoptosis. When administered alone, AT-101 resulted in increased apoptosis in a concentration-dependent manner in both groups, with enhanced activity in HCC2429 even at lower concentration. Furthermore, AT-101 promoted radiosensitivity of A549 and HCC2429 cells (p < 0.005). A549 cells required increased AT-101 dose to achieve the same level of cytotoxicity than HCC2429 cells. These investigations suggest that the Bcl-2 family members may serve as effective therapeutic targets in lung cancer. However, the potential of AT-101 as an agent that enhances the therapeutic ratio of radiotherapy varies depending on the lung cancer clone. / Next, we turned to a different approach, focusing on the inhibition of apoptosis instead of its promotion. This work hypothesis was based on previous observations looking at the role of radiation-induced apoptosis by knockdown of Bak and Bax. The radiosensitivity of breast and lung cancer in vitro was increased through autophagy, an alternate type of programmed cell death. Consistently, radiation-induced apoptosis accounts for a minor portion of cell death in irradiated solid tumors. The hypothesis of our work was that apoptosis inhibition would increase radiation-induced autophagy and tumor sensitivity to radiation. To block apoptosis, we used Z-VAD, a broad-spectrum caspase inhibitor, and examined its in vitro and in vivo effects on breast and lung cancer models. Z-VAD markedly radiosensitized breast and lung cancer cells in vitro, with a radiation dose enhancement ratio of 1.31 (P < 0.003). The enhanced tumor cytotoxicity was associated with induction of autophagy. In both breast and lung cancer mice xenograft models, the administration of Z-VAD concurrent with radiation produced a significant tumor growth delay compared with radiation alone and was well tolerated. Interestingly, Z-VAD also had a dramatic antiangiogenic effect when combined with radiation both in vitro and in vivo. Thus, Z-VAD represents an attractive anticancer therapeutic strategy. We further explored the potential of apoptosis inhibition as a way to sensitize cancer to radiation using a more selective chemical, M867, which is a reversible caspase-3 inhibitor. In an in vivo mouse hind limb lung cancer model, the administration of M867 with ionizing radiation was well tolerated, and produced a significant tumor growth delay compared with radiation alone. A dramatic decrease in tumor vasculature and tumor cell proliferation was observed with M867 despite the reduced levels of apoptosis. The radiosensitizing effect of M867 through the inhibition of caspases was validated using a caspase-3/-7 double-knockout (DKO) mouse embryonic fibroblasts (MEF) cell model. Consistent with our previous results, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. Finally, we investigated the mechanism by which radiation triggers autophagy in caspase-3/7-deficient cells, and found the involvement of endoplasmic reticulum (ER) stress. The ER activates a survival pathway, the unfolded protein response, which involves ER-localized transmembrane proteins such as protein kinase-like ER kinase (PERK), inositol-requiring enzyme-1, and activating transcription factor-6. In this study, we found that PERK is essential for radiation-induced autophagy and radiosensitivity in caspase-3/7 double-knockout cells. Irradiation of these cells increased expression of phosphorylated-eIF2a. Similar results were seen after administration of tunicamycin (TM), a well-known ER stress inducer. We found that the administration of TM with radiation in MCF-7 breast cancer cells, which are lacking functional caspase-3 and are relatively resistant to many anticancer agents, enhances radiation sensitivity. Our findings revealed ER stress as a novel potential mechanism of radiation-induced autophagy in caspase-3/7-deficient cells and as a potential strategy to maximize efficiency of radiation therapy in breast cancer. Our data suggested that caspase-3 has a critical role in modulating the PERK/eIF2a pathway after radiation. / Many cancers exhibit multiple deregulations in cell death pathways, allowing for the subsequent promotion of tumor cell survival, and contributing to a relatively low response rate to therapies based on the use of pro-apoptotic strategies. As we have showed, there is a potential for novel anticancer strategies to overcome resistant cancer cells with defective apoptosis machinery in order to improve overall therapeutic outcomes. Such novel approach is to drive cancer cells towards autophagy, as demonstrated by our experiments that studied the effect of radiation on the induction of autophagy in caspase-deficient models. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
195

On the Speed of Neuronal Populations

Keith, Tūreiti 07 March 2017 (has links)
No description available.
196

The role of sleep in modulating subjective and autonomic arousal

Hutchison, Isabel January 2016 (has links)
Emotion is thought to modulate the long-term fate of memories. Experiences that elicit an emotional response tend to be better remembered than comparatively unemotional events, while the emotional charge associated with these memories diminishes over time. Sleep – in particular rapid-eye movement (REM) and slow-wave sleep (SWS) - has been implicated in both the selective strengthening and affective uncharging of emotional memories. According to the sleep to forget, sleep to remember (SFSR) hypothesis, both processes occur in parallel during REM sleep. Although evidence strongly supports a role of REM sleep in the selective consolidation of emotional memories, it is far less clear to what extent sleep is involved in the development of emotional charge. While some studies support a primary role of REM in habituation (i.e. the decrease of emotional charge), others suggest a more central role of SWS. Further, existing literature indicates that the physiological (bottom-up) and cognitive (top-down) components of emotional responses may be differentially processed across sleep. Chapter 2 proposes complementary functions of REM and SWS in emotional memory processes based on a combination of evidence from rodent and human research. The experiments presented in this thesis employed polysomnography (PSG), subjective arousal testing, pupillometry, targeted memory reactivation (TMR), and transcranial alternating current stimulation (tACs) to investigate the respective roles of REM and SWS in the overnight development of subjective and autonomic arousal in response to negative emotional and neutral stimuli. In Chapter 3 I assessed how subjective and autonomic responses to neutral and negative stimuli develop across 12 hours containing either nocturnal sleep or daytime wakefulness. I found that autonomic reactivity – indexed by pupil dilation – decreased across sleep but not wake, while subjective arousal did not change across either interval. In a further experiment, I investigated whether the placement of sleep within a 24 hour interval would affect habituation. Once again, autonomic arousal decreased significantly. Subjective arousal towards negative stimuli was found to decrease more if sleep followed rather than preceded daytime wakefulness within the 24 hour interval. In Chapter 4 I explored the role of REM sleep in emotional habituation by applying 5 Hz tACs in an attempt to entrain endogenous cortical theta (4-7 Hz) activity, which has previously been associated with emotional memory consolidation in humans. Surprisingly, I found that stimulation was associated with a reduction in theta power and no change in subjective or autonomic habituation compared to the sham control night. In Chapters 5 and 6, I addressed the contribution of memory reactivations during SWS and REM sleep, respectively, in emotional habituation using TMR. In Chapter 5, I found that TMR was associated with a decrease and simultaneous increase in autonomic habituation towards negative and neutral stimuli, respectively, without affecting overnight changes in subjective arousal. In contrast, in Chapter 6, TMR during REM sleep was associated with an increase in subjective habituation towards both neutral and negative stimuli without affecting autonomic responses. In conclusion, my results provide new insights to the role of sleep in emotional habituation. I have provided evidence that targeted memory reactivation during REM sleep can modulate the development of cognitive evaluations of emotion, while TMR during SWS may interfere with autonomic habituation. This suggests distinct emotional processing during REM and SWS, as well as a dissociation between subjective and autonomic habituation across sleep. These results are discussed in the light of previous research and the model of sleep-dependent emotional memory processing proposed in Chapter 2.
197

Targeted therapy sensitivity and resistance in solid malignancies

Jokinen, E. (Elina) 28 October 2014 (has links)
Abstract Cancer is a major global killer and a challenge for the healthcare worldwide. Earlier cancer has been treated with surgery, radiation, chemotherapy and hormonal therapy. Unfortunately the efficiency of these therapies has shown to be limited and this has raised an enthusiasm for development of new, targeted cancer therapies that are based on activated oncogenes. The challenge of the targeted therapies is therapy resistance, de novo, adaptive and acquired. This work investigated targeted therapy sensitivity and resistance in lung cancer, breast cancer, colorectal cancer, and melanoma cell lines. The results of this study indicate that in some non-small cell lung cancer cell lines, dual PI3K and MEK inhibition is a more efficacious treatment than inhibition of either solely. It was also showed that the maximal effect of the dual inhibition can be achieved with alternative dosing schedules that are potentially more tolerable in clinical use. Furthermore, by combining ABT-263, entinostat or dasatinib to the dual PI3K and MEK inhibition, the efficiency of the therapy can be increased. Bcl-xl downregulation is a major determinant of the apoptotic response to the triple inhibitor treatment. The current work showed that cancer stem cells can mediate resistance to targeted therapies. Since these cells follow the stochastic model, concurrent therapy with a targeted agent and a stem cell targeting drug might be needed for maximal therapeutic efficiency. This study also showed that Gö6976 acts as a potent inhibitor of mutant EGFR despite the presence of T790M, the most important mechanism of acquired resistance for EGFR tyrosine kinase inhibitors in lung cancer, both in vitro and in vivo. / Tiivistelmä Syöpä on yksi johtavia kuolemanaiheuttajia ja tauti on maailmanlaajuinen haaste terveydenhuollolle. Perinteiset syöpähoidot käsittävät kirurgian, sädehoidon, kemoterapian ja hormonaalisen hoidon, mutta näiden rinnalle on noussut uusia, aktivoituneiden onkogeenien signaalien estoon perustuvia hoitoja. Tämä työ tutki kohdennettuja syöpähoitoja ja näihin hoitoihin liittyvää resistenssiä keuhko-, rinta- ja paksusuolen syövän sekä melanooman solulinjoissa. Tulokset osoittavat, että joissakin ei-pienisoluisen keuhkosyövän solulinjoissa yhdistetty PI3K- ja MEK-esto aiheuttaa tehokkaamman vasteen kuin kummankaan signaalireitin esto yksistään. Tässä työssä näytettiin myös, että maksimaalinen vaste yhdistetylle PI3K- ja MEK-estolle voidaan saavuttaa vaihtoehtoisilla annostelutavoilla, jotka ovat voisivat olla paremmin siedettyjä kliinisessä käytössä kuin kahden lääkkeen jatkuva annostelu. Tämä tutkimus osoitti lisäksi, että kaksoiseston tehokkuutta voidaan lisätä yhdistämällä hoitoon kolmas lääkeaine, ABT-263, entinostaatti tai dasatinibi. Bcl-xl proteiinilla on keskeinen rooli apoptoottisen vasteen määrittäjänä näille kolmen lääkkeen käsittelyille. Tämä työ osoitti, että syövän kantasolut voivat välittää resistenssiä kohdennetuille syöpähoidoille. Nämä solut noudattavat niin kutsuttua stokastista mallia, joten parhaan vasteen saaminen saattaa edellyttää että hoito kohdentuu sekä erilaistuneisiin että kantasolutyyppisiin syöpäsoluihin. Tässä tutkimuksessa osoitettin lisäksi, että Gö6976 toimii mutatoituneen EGFR:n estäjänä, huolimatta kehittyvää keuhkosyövissä resistenssiä välittävästä T90M mutaatiosta, sekä in vitro -että in vivo -malleissa.
198

Quantification de protéines dans des matrices complexes par spectrométrie de masse : nouveaux outils et apllications / Protein quantification in complex matrices by mass spectrometry : new tools and applications

Rougemont, Blandine 01 July 2016 (has links)
La spectrométrie de masse en tandem est désormais une technique de choix pour l'analyse du protéome humain ou de micro-organismes. Typiquement, les protéines sont tout d'abord digérées en peptides protéotypiques, ceux-ci étant ensuite séparés par chromatographie liquide avant d'être analysés par MS/MS. L'identification et la quantification de ces peptides rapporteurs de protéines permet la mise en évidence d'un phénotype ou d'un mécanisme cellulaire particulier, dans un organisme complexe. Des approches par spectrométrie de masse ciblée et non ciblée coexistent et sont complémentaires dans l'analyse protéomique. Les travaux présentés ici se sont focalisés sur le développement de méthodes ciblées, et plus particulièrement en mode SRM, à travers deux applications chez des micro-organismes modèles. Ainsi, une première étude s'est portée sur la quantification absolue des protéines du virus chimère dengue – fièvre jaune candidat vaccin. Par l'utilisation d'une stratégie de quantification de type AQUA, nous avons pu développer, valider et transférer le dosage des quatre sérotypes du virus chimère candidat vaccin. Les problématiques soulevées à travers ce projet nous ont amené à proposer des étapes à contrôler lors du développement d'un dosage par la stratégie AQUA.Dans une seconde partie, nous nous sommes attachés à développer une analyse quantitative sans marquage de 445 protéines afin d'étudier l'infection d'un phytopathogène, Dickeya dadantii, sur une plante modèle. Afin d'assurer un transfert simple et rapide de cette analyse multiplexée, nous proposons un nouvel outil d'acquisition indépendant des temps de rétention. Cet outil développé en partenariat avec la R&D Sciex à Toronto est appelé « Scout-MRM » / Tandem mass spectrometry is now a technique of choice for human or micro-organisms proteome analysis. Typically, proteins are first digested into surrogates’ peptides, separated by liquid chromatography before being analyzed by MS/MS. The ultimate goal is the identification and the quantification of these peptides, belonging to proteins and highlighting a phenotype or a cellular mechanism in a complex organism. Both targeted and untargeted approaches are used and are complementary in proteomic analysis. The work presented here is focused on the development of targeted methods, and more particularly in the SRM mode, through two applications involving micro-organisms. So, the first study concerned to absolute quantification of viral proteins of the chimeric yellow-dengue fever, vaccine candidate against dengue. By using the AQUA quantification strategy, we were able to develop, to validate and to transfer the method for the four chimeric virus serotypes. Then, problems met during development process, lead us to suggest check points to verify when using AQUA strategy. In a second part, we attempted to develop a quantitative label free analysis of 445 proteins to study the infection of the phytopathogen Dickeya dadantii, on a model plant. To ensure a simple and fast transfer of this multiplex, we purpose a new acquisition tool, independent from retention time. This tool was developed in a partnership with the R&D Sciex, Toronto and is called “Scout-SRM”
199

Design and Development of Peptidomimetic Ligands for Targeting Radiopharmaceuticals, Imaging Probes, and Immunotherapeutics in Oncologic Disease

Doligalski, Michael Lawrence 21 October 2016 (has links)
Cancer is a leading cause of morbidity and mortality in the developed world. While much has been learned about these diseases in the last few decades, one of the main barriers to widespread advancement is the heterogeneity of cancer biology. A growing body of evidence supports the idea that certain protein receptors are overexpressed on the surface of tumor cells as compared to normal tissues. These extracellular biomarkers provide a unique opportunity to selectively target the tumor with both imaging and therapeutic modalities. The research in this dissertation focuses on targeting proteins on the tumor cell surface with peptidomimetic ligands. Following a description of various extracellular receptors, chapter one discusses targeting ligands designed to specifically and selectively bind these receptors. It reviews recent literature on targeted alpha-particle therapy and ends with an explanation of the advantages of peptide ligands. Three distinct approaches to imaging and therapeutic modalities are then discussed in subsequent chapters. First, a peptide ligand was designed to target radionuclides to malignant melanoma cells in an effort to develop companion radiotherapeutics and diagnostic imaging agents. The second research project describes the synthesis of a novel antagonist peptide ligand with conjugated near infrared dye, and its utility for real-time intraoperative guidance during pancreatic adenocarcinoma resection. Finally, the last chapter describes how the relatively new field of immunomodulatory effectors may be enhanced by their derivatization with peptide targeting ligands.
200

Measurable Benefit of Targeted versus Comprehensive Medication Reviews in Medication Therapy Management

Buhl, Allison, Boesen, Kevin January 2015 (has links)
Class of 2015 Abstract / Objectives: To determine whether comprehensive medication reviews (CMRs) or non-CMR interventions following targeted medication reviews (TMRs) resulted in more positive medication changes. A CMR is a structured medication management session that includes a full review of an individual’s medical and medication records. Non-CMR interventions are more targeted problem-based interventions that include shorter medication management sessions, written patient outreach, and direct to provider interventions. Methods: This cross-sectional quality improvement project compared the number of individuals with positive medication changes who received a CMR to those with positive medication changes who did not receive a CMR (non-CMR). Individuals were included in this project if they qualified for the Medication Management Center’s (MMC) pharmacist-driven medication therapy management (MTM) program and received their medication review(s) in 2012 or 2013. The addition of an appropriate medication or the removal of an inappropriate medication was considered a positive medication change within 120 days of intervention. Odds ratios were calculated using Wilcoxon Rank Sum. Results: A total of 418,649 participants in 2012 and 370,107 in 2013 had their medications reviewed as part of the MTM program. The non-CMR group accounted for the majority of the interventions (375,159 for non-CMR versus 43,490 for CMR in 2012 and 332,006 versus 38,101 for 2013). Significantly more positive medication changes were achieved in the non-CMR group (n=88,467 for 2012 and n=54,971 for 2013) following the medication review compared to the CMR group (n=9,796 for 2012 and n=7,034 for 2013). CMR recipients were more likely to receive a recommendation (odds ratio 0.70, 95% confidence interval 0.69-0.72 for 2012 and odds ratio 0.62, 95% confidence interval 0.60-0.63 for 2013). Non-CMR recipients were more likely to have a recommendation result in a medication change (odds ratio 1.24, 95% confidence interval 1.21-1.28 for 2012 and 1.26, 95% confidence interval 1.22-1.30 for 2013). Conclusions: While the percentage of participants who received a recommendation in the non-CMR group was lower, a greater percentage of these participants received a medication change. This indicates that non-CMR interventions following TMRs may be more effective in producing a positive medication change compared to CMRs.

Page generated in 0.0671 seconds